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Abstract 

Distributed computing has brought about promising new possibilities, both 
by increasing the computing power to which people have access and by sup- 
porting new technologies such as real-time data analysis and collaborative ap- 
plications. The power of distributed systems is offset by the tremendous com- 
plexity of developing applications for dynamic, heterogeneous environments. 
An important way to manage distributed applications is designing them to 
adapt their computing and networking needs to their environment. To support 
adaptation, a number of systems provide resource information obtained using 
active benchmarks. Benchmarks provide support for many applications, but 
their effectiveness is limited by low scalability, invasiveness, and the inability 
to derive network topology. I have examined the use of low-level network in- 
formation to support adaptive applications without the shortcomings of active 
benchmarking. 

The low-level details obtained directly from network components provide 
the information needed by distributed applications to adapt themselves to mod- 
ern network environments. Low-level access overcomes the limitations inher- 
ent in benchmarking by providing a scalable, non-invasive measurement tech- 
nique that provides network topology information while continuing to sup- 
port the predictions of end-to-end application performance available through 
benchmarking. In this dissertation, I address the need for low-level infor- 
mation, the feasibility of providing it through an application-level interface, 
the accuracy of end-to-end predictions made provided by low-level informa- 
tion, and the topology discovery capabilities using low-level information. The 
topology discovery algorithms I present are the first to use the incomplete in- 
formation available through network components and are provably good with 
minimal knowledge. My research demonstrates that violating the end-to-end 
networking abstraction by providing applications with access to low-level net- 
work knowledge meets the needs of many applications and is feasible on mod- 
ern networks. 
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Chapter 1 

Introduction 

Parallel computing has been used for decades as the ultimate resource for problems in 
the forefront of science, engineering, and security. Many problems are best addressed 
by throwing massive computing power at them. As our understanding of how to build 
the massively parallel systems and algorithms used to solve these problems has improved, 
we have been able to address problems ranging from huge astronomical simulations to 
subatomic nuclear physics application. 

While traditional massively parallel processing (MPP) systems have become well-un- 
derstood, new parallel computing environments have emerged. Beginning with PVM [49], 
parallel computing has spread from its initial domain of high-cost custom-built machines 
to availability anywhere there are a few machines and a network to connect them. Initially 
the development of distributed computing was motivated more by the desire for cheaper 
computing resources. This goal has been achieved—originally working with only high- 
end workstations rather than traditional PCs, it is now possible to use commodity systems 
that cost little more than a home PC for state-of-the-art parallel processing. 

Perhaps more importantly than saving money, however, distributed computing provides 
the power to solve problems unaddressable by previous computing paradigms. One of the 
major restrictions of the MPP computing model is that all input and output remain on that 
same machine, perhaps being transfered later from one filesystem to another. Distributed 
systems can solve problems that naturally span multiple locations. With distributed com- 
puting, it is possible to perform computation on data sets stored on remote sites. Real-time 
processing can be performed on the data from scientific or medical instruments as they are 
used. People from different locations can work collaboratively while viewing output of 
the same program. And, of course, multiple parallel computing resources can be brought 
together to solve those problems too large for even the biggest dedicated MPPs. 

One of the enabling factors in the development of distributed computing has been the 
improvement of the programming interfaces that allow distributed applications to make 
use of their resources. Prior to the development of PVM, it was possible to write dis- 
tributed applications using standard networking protocols, but the complexity of managing 
such communication directly made such applications rare. PVM changed this by offering 
a uniform API that allowed the application programmer to view the various machines in- 
volved in the computation as a single "virtual machine." The PVM interface made using 
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a distributed system just as easy as programming an MPP. The development of MPI [80] 
implementations that support heterogeneous, distributed systems enabled more people to 
use these systems by allowing programmers to use the same code to run on everything from 
the fastest MPP to the slowest network of workstations. Shared-memory programming has 
been similarly improved with standardized interfaces such as pthreads [84]. 

While these developments have improved the capabilities of parallel programming, the 
environments used are now extremely diverse, both in terms of hardware and software. The 
hardware used to support parallel applications still includes traditional MPPs. In addition, 
dedicated clusters of PCs, such as Beowulf [10] systems, may be used, offering widely 
varying levels of computing and networking support. Furthermore, some applications re- 
quire access to resources spread across the Internet, with its high latencies and bandwidths 
varying from almost unlimited to modem speeds. 

Applications, meanwhile, span a similar breadth. Some applications are programmed 
with a completely regular communication pattern, such as communication along a grid. 
Other applications have dramatically different communication patterns, ranging from mas- 
ter/worker applications where one processor dispatches tasks to the other processors to 
pipelined applications where processors are arranged in a pipeline and work is passed 
through them in sequence. Some applications, such as visualization, have real-time dead- 
lines, requiring the application to acquire more resources or adjust the computations being 
performed to deliver on-time results to the user. Other applications, such as many simu- 
lations, have no such constraints, and the user may be most interested in optimizing the 
cost-effectiveness of the computation. 

Despite the breadth of applications, the improvements in programming interfaces has 
allowed many of these applications to be written with the same set of programming tools. 
The abstractions provided to the modern programmer allow great power to be harnessed 
without any knowledge of how each particular parallel system will be utilized or how they 
perform. 

While interfaces with better abstraction have improved the programmability of paral- 
lel systems, they have not improved the ability of a programmer to utilize these systems 
efficiently. Prior to the advent of standardized programming interfaces, it was typically 
necessary to customize the code for a particular machine. Optimization for a particular 
architecture was, therefore, much more convenient. 

Beowulfs are an excellent example of why performance information is important. 
While MPP network architecture is generally fixed for a particular platform, a Beowulf's 
network can vary considerably, even though all Beowulf nodes are indistinguishable from 
the application's view. Using commodity Ethernet switches, it is possible to build a net- 
work with sufficient bandwidth to emulate a crossbar, or to create a bottleneck such that the 
bisection bandwidth of the network is no greater than the bandwidth of the endpoint links. 

To solve these problems, an application must have the ability to characterize the net- 
work environment it will be using. By obtaining that information in a portable form, the 
application can adapt to its networking environment without losing the portability obtained 
by the high level of abstraction available in modern distributed programming environments. 

Although in many cases there is only one particular portion of the network that causes 
bottlenecks, frequently the Internet in wide-area distributed applications, it is important that 
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network performance information be available for all components of a distributed environ- 
ment. The programming interface has allowed application developers to treat processors in 
an MPP, machines in a cluster, and machines across the world using the same interface. If 
portable selection of the most appropriate environment and optimization of behavior is the 
goal of providing network information, then it must also be available regardless of the types 
of machines involved. Only then will a developer be able to design an application without 
regard for its communication requirements and expect it to automatically select and config- 
ure itself for the proper environment without the application's end-user understanding the 
issues behind the adaptation. 

1.1    How applications use the network 

To understand the information that must be provided to distributed applications, we must 
first understand how applications make use of the network. Broadly speaking, applica- 
tions' communication patterns are classified into two groups: regular and irregular. Regu- 
lar applications have the same communication occurring between all processors. Irregular 
applications may use a number of different types of communication patterns. This sec- 
tion primarily discusses regular communication, because several of the following sections 
discuss how to optimize the communication requirements of regular applications. 

Regardless of whether an application is regular or irregular, there are a number of dif- 
ferent techniques it can use to adapt to the network. A very large number of projects have 
focused on various aspects of developing and supporting adaptive applications [12,16,27, 
45,47,52,86,96,100,110,115]. Steenkiste has divided the adaptation used by network- 
aware applications into three strategies: model-based, performance-based, and feature- 
based [106]. Of these three, I will focus on model-based adaptation, where an applica- 
tion predicts its performance using a model of its performance based on network metrics. 
Model-based adaptation allows a program to predict its performance on a large number of 
systems without actually running on them. While they frequently offer better performance, 
performance-based and feature-based adaptation are more limited in value because they 
only allow for adaptation on the machines already in use. Many applications may desire 
to use model-based adaptation prior to running or for dynamic load-balancing, while also 
using performance- or feature-based prediction during execution to adapt to the chosen set 
of resources. 

One of the problems addressed by many applications in distributed environments is 
mapping a regular application onto a complex irregular network. Most previous mapping 
solutions have not attempted this problem, and have instead either addressed only average 
network performance given by a uniform system [113] or ignored the issue altogether. 
Some work [120] has modeled communication costs directly with brute-force calculations, 
but such approaches are difficult to use for processor selection due to their high cost. 

Broad classifications of the communication needs of an application are possible, how- 
ever, and can significantly benefit a scheduler. The most important distinction to make is 
between local and global communication. Most applications have communication which 
can be divided into one of these categories—some use both at different times. Local com- 
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munication occurs along the application's structure, where each task exchanges messages 
with a small set of neighbors. Global communication involves all or most tasks in a sin- 
gle conceptual operation, where data is exchanged in some way between all tasks. This 
difference becomes very important with distributed systems that may have poor bisection 
bandwidth, but high local bandwidth. Some applications may exhibit both, such as FFT, 
which has two phases, one involving only neighborhood communication along rows or 
columns and the other involving a matrix transpose, generally done through all-to-all pairs 
communication. 

1.1.1 Neighborhood communication 

Neighborhood, or local, communication refers to communication between a task and the 
set of tasks that are neighbors to that task. The neighbors of a task are usually determined 
by the structure used by the application. For instance, in an application that arranges tasks 
along a ring, each task has two neighbors. In an application where tasks are arranged along 
a mesh, each task has four neighbors. A three dimensional irregularly partitioned struc- 
ture, such as that used by Quake [8], may have variable numbers of neighbors depending 
on the particular partitioning of the space, however, even for such an irregular application, 
processors communicate with a restricted number of neighbors [88]. While the partition- 
ing is irregular, the presence of neighborhood communication still offers opportunities for 
optimization. 

The importance of separating global and local communication is that distributed net- 
works are frequently better optimized for one than the other. For instance, in a 16 processor 
cluster where all processors are connected to a single switch with 100Mb Ethernet, modern 
processors can easily saturate each link. A high-performance switch can handle all links 
transmitting at full speed, allowing any global or local communication to occur at full link 
speed. On the other hand, if the same 16 nodes are connected with Ethernet set up in a 
binary tree with the same 100Mb links, the higher levels of the tree will quickly become 
bottlenecks for global communication, but local communication can occur at a higher ag- 
gregate rate if communication along the bottleneck links is minimized. The wide variety of 
network technologies now available, such as 100Mb and 1Gb Ethernet, ATM, and Myrinet, 
allow networks to be designed with varying performance characteristics and bottlenecks. 
Separating local and global communication allows networks and applications to be evalu- 
ated in terms of how they support and utilize each type of communication, thus simplifying 
the problems of performance prediction and node selection. 

1.1.2 Global communication 

Broadcasts, all-to-all pairs communication, and operations such as prefix sums are exam- 
ples of global communication. The performance of global communication is generally 
dependent on the bisection bandwidth [42], which is the minimum communication band- 
width between any bisection of the processors. Calculating the exact bandwidth used by 
an application for global communication may be complicated by the presence of various 
hardware or software optimizations for that communication. Assuming sufficient knowl- 
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edge of the system's behavior, the utilization of the bottleneck links in the network can 
be calculated. Knowledge of network hardware support for global communication relieves 
the scheduler of determining the best way to perform collective communication on that 
network. 

There are a number of user-level and system-level possibilities for optimizing global 
communication. ECO, which is described in the next section, is a user-level system that 
arranges collective operations along a tree structure designed to reflect the local network's 
topology [73]. Magpie is a more recent system designed using similar techniques to take 
advantage of knowledge of WAN topology [67,68]. Better performance can usually be 
achieved by taking advantage of network-level operations [56], but because these are not 
generally available, packages such as ECO and Magpie are needed for efficient perfor- 
mance on heterogeneous networks. 

1.2   About network congestion 

Before discussing methods for measuring and predicting congestion and performance, I 
will characterize network congestion, how it affects the applications, and expectations for 
change in the future. 

In a network without any other traffic, the application's behavior is determined solely 
by the components of the network. The latency of the components along the data's path 
is additive, and the bandwidth obtained by the application is determined by the component 
on the path with the lowest bandwidth, referred to as the bottleneck bandwidth. For an 
application making a connection across such a network, this information is sufficient to 
determine the performance of that connection. 

However, real applications seldom run on a network with no other traffic. In most en- 
vironments, a large number of applications compete for use of the same bandwidth. As 
the amount of traffic sent across the network approaches its capacity, the performance ob- 
tained by the applications is reduced. There are two ways that traffic congestion can reduce 
performance. 

Link congestion 

The most elementary form of congestion is link congestion, or competition for the data link 
connecting the machine to the network. The majority of network architectures send data 
across a single serial line that cannot be used simultaneously by multiple hosts. In some 
network architectures (full-duplex point-to-point) there are no other machines sharing the 
line, so there is never link contention. Other architectures have several machines sharing 
the same link, and a machine may be competing with other senders when putting data on 
the link. 

The best, and most common, example of a shared network is Ethernet [81]. The Eth- 
ernet protocol implements carrier sense, multiple access, and collision detection. Simply 
put, this means that several machines connected to the same shared Ethernet can detect if 
another machine is using the network and can react if two begin using it simultaneously. 
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This technique allows the machines to effectively share the same link. However, when sev- 
eral machines are trying to send data simultaneously, the contention reduces the bandwidth 
each receives. 

Thinwire and thickwire Ethernets are obviously shared, however, sharing the same 
physical link is not the only way a data link can be shared. Twisted pair wiring appears to 
connect hosts directly to the network without sharing by other hosts. However, many hubs 
that these machines are connected to are merely copying the data between lines. While the 
hub provides separate physical, or electrical, links on each port, copying the data between 
ports results in the physical links acting as the same data link. Thus, the contention issues 
are identical to that of an electrically shared Ethernet. 

Switch congestion 

Ethernet switches, or bridges, on the other hand, actually forward the traffic between their 
ports based on the destination of the data. For switched Ethernet and many other types 
of networking, two machines sending data simultaneously do not compete for the same 
network link. Instead, competition occurs inside the switch. For instance, if the path taken 
by data sent by two different machines reaches the same switch, to that point there has been 
no competition. However, if the paths from that switch to the data's destinations leave the 
switch on the same link, then there is competition inside the switch for that outgoing link. 

The exact policy by which this congestion is resolved varies from device to device and 
has a significant impact on the performance of the network. When data is arriving faster 
than it can leave, the switch may initially save some of that data in a buffer. If the higher 
rate is merely temporary, then the buffer may absorb a small burst and all data will be 
delivered as the buffer empties. However, if the data continues to arrive at a faster rate 
than the outgoing link, the buffer will fill up and some packets will have to be dropped. 
This behavior is commonly modeled as an M/l/l/m queue, although the arrival process is 
actually not Poisson. 

Although there are some differences in the mechanisms behind link and switch conges- 
tion, the overall effect is the same. The latency required to deliver a packet of data increases 
and the bandwidth available for the application decreases. It is theoretically possible for a 
host to observe the link congestion present on its own interface, but this is rarely informa- 
tion provided to the user, so for most intents and purposes, there is no difference between 
the two as far as application behavior. 

1.2.1    Congestion and end-to-end protocols 

Mild congestion causes packets to be delayed in the network. Heavier congestion may 
cause switches to drop the packets. The important question is what effect delayed or 
dropped packets may have on the end-to-end performance of the connection. The answer 
to this question depends on the particular protocol being used. 

Some data streams, and the protocols used to support them, are not reliable and may 
not care about packet loss. Audio or video signals frequently tolerate small numbers of 
lost packets. In the event of high packet loss, the amount of data being sent may be ad- 
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justed in hope of reducing the congestion so a higher percentage of packets are delivered 
successfully. 

The vast majority of applications, however, need lossless network connections. Almost 
all of these applications rely on TCP to ensure in-order end-to-end delivery. Complete de- 
tails of TCP's congestion avoidance strategies can be found in most networking textbooks, 
but here is a quick overview. 

TCP assumes that all packet loss is due to congestion. On a modern wired network, this 
is a reasonable assumption. Whenever a packet is lost, TCP reduces its window size, which 
governs the amount of data in transit on the network simultaneously. This, in turn, restricts 
the rate at which TCP can send data. Because new packets are sent and the window enlarged 
only when previous packets are acknowledged, this behavior also adjusts the transmission 
rate for a connection's latency. 

There are several variations of the basic TCP algorithm available. Because they recover 
from packet loss in different ways, their performance varies as they encounter conges- 
tion [17]. 

1.2.2   Locations of congestion 

To understand how congestion affects traffic, first consider where congestion occurs in 
networks. 

Local area networks 

Almost all LANs are organized with a tree (or star) topology. Ethernet, the most com- 
mon type of LAN, requires such a topology. Other networks are not so restrictive, but are 
frequently used in a tree topology as well. 

The tree structure naturally creates bottlenecks. Consider the sample network shown in 
Figure 1.1. The switches in this network prevent link congestion between desktops A and B, 
although other machines attached to the same hubs may cause link congestion. Connections 
between A and B and many others in the network will experience congestion further along 
their paths. If A and B both try to connect to machines across the Internet, their connections 
will share the same links from the first switch out to the Internet connection. Furthermore, 
the relationship between the structure of the network and the building's structure can cause 
bottlenecks. For efficiency reasons, all of the servers for a department are typically located 
in a central machine room. In this network example, there is only a single link connecting 
all of the desktops in the network to the machine room, therefore all of the machines in 
the network will face congestion whenever they request a file or perform another operation 
involving the servers. 

Effective design of Ethernet networks is a topic beyond the scope of this dissertation. 
The important point is that congestion in Ethernet networks is extremely dependent on the 
relationship between the topology of the network and placement of machines that are in 
communication with each other. Without an understanding of the topology of the network 
and the traffic sources on it, it is impossible to predict where congestion will occur, and 
correspondingly, to predict the performance of a new application on the network. 



1.2 About network congestion 

To Internet 

♦ Hub <Q> Switch 

Figure 1.1: Example of the topology of a typical Ethernet LAN. 

Wide area networks 

Wide area networks are not restricted to the tree topology that local area networks are. In 
fact, the topology and actual routing of packets may be arbitrary: depending on contracts, 
pricing, and other issues independent of the capabilities of the networks. Furthermore, it is 
fairly dynamic: as links go up and down, capacity is transferred between voice and data, 
and traffic demands change. 

In this environment, congestion can happen anywhere, and the network conditions caus- 
ing the congestion can change at any time. Wide area ISPs may provide a specific band- 
width connection from their clients to their internal networks, but their internal bottlenecks 
and the bottlenecks of other networks needed to reach the destinations will frequently sig- 
nificantly reduce the bandwidth actually available for connections. 

There are fundamental differences between LAN traffic and WAN traffic. The most 
important difference is the number of active connections on each network. LANs typi- 
cally support few connections simultaneously. With so few connections, a new application 
can have a significant impact on the network's status and on other applications. A WAN, 
however, generally supports thousands of connections simultaneously. Because the com- 
peting traffic is an aggregation of many separate connections, an individual application can 
generally not influence the behavior of the other applications significantly. 

The difference in traffic types on the network has a substantial influence on the amount 
of congestion generally seen. Because LAN traffic consists of only a few simultaneous 
connections, it is much more prone to burstiness, with applications occasionally waking 
up and briefly consuming the majority of the bandwidth, then sleeping. This makes the 
average congestion level rather low, but with bursts of maximum utilization. Because of the 
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aggregation of traffic on WANs, however, their traffic tends to be completely different. No 
single application consumes a significant fraction of the bandwidth, so although the traffic 
is still bursty, it is much more predictable than LAN traffic. Furthermore, the congestion 
level is typically high. Because so many applications are sharing the network, they are 
capable of utilizing far more bandwidth than is typically available on a link. 

1.3   ECO 

This section gives one example of how an application's communication can be adapted to 
fit the network on which it is running. ECO is a good example of the types of measurements 
and adaptations that may be needed in a distributed environment. 

One of the largest differences between distributed systems and dedicated MPPs is the 
lack of support for collective communication on distributed systems. Not only is there not 
native support, but the low bisection bandwidth severely restrains the performance of col- 
lective communication run at application level across the network. The Efficient Collective 
Operations package (ECO) contains programs which solve this problem by analyzing the 
network and establishing efficient communication patterns. These patterns are then used 
by ECO's collective operations, which are available to applications through a run-time li- 
brary, as well as for task placement to improve the performance of local communication. 
The analysis to build the patterns is done off-line, so that, after paying the one-time cost of 
analyzing the network, the execution of application programs is not delayed. 

This section describes ECO and gives performance results of using ECO to imple- 
ment the collective communication in CHARMM, a widely used macromolecular dynam- 
ics package. The techniques used by ECO to measure the network's performance and to 
design the communication patterns are of particular interest. ECO was designed and im- 
plemented several years ago without any support from the network for measurement or 
optimization. It utilizes benchmarks that send data to measure the performance of the net- 
work. The performance information is then used to determine optimized communication 
patterns. 

The lessens learned from developing ECO were among the major influences leading up 
to the design of Remos. In fact, the difficulties I experienced in determining the topology 
of the network needed for the communication patterns were among the fundamental influ- 
ences behind my support of the topology interface in Remos. Because of these lessons, the 
Remos interface provides the information needed to meet all of ECO's topology knowledge 
requirements. 

1.3.1    Related work on collective communication 

Collective communication provides important functionality for many applications. Effi- 
cient implementations of core collective operations is crucial for achieving maximum per- 
formance of applications on message-passing systems [83]. 

There has been substantial work on collective communication packages. The MPI stan- 
dard [46] acknowledges the importance of collective communication by including it as a 
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chapter in the specification. Papers from the InterCom project discuss general techniques 
for building high-performance collective communication libraries, implementation of their 
library on several architectures [9], and other packages and approaches to collective com- 
munication [83]. 

Bala et al. describe a collective communication library originally designed for the IBM 
SP1 [6]. They discuss performance tuning issues and provide a detailed discussion of the 
semantics of collective communication and group membership, including the correctness 
of collective operations. 

Considerable work has been done on collective operations and multicast communica- 
tion in general, which can be used as the underpinnings for collective communication, on a 
variety of specific physical networks. McKinley et al. have written several papers on issues 
involved in implementing such operations on bus-based networks [78], wormhole routed 
MPPs [79], and ATM networks [57]. 

Many applications require the notion of communication topology, such as a mesh or 
a ring, which is used by the application for nearest neighbor communication. Developers 
have expressed a desire for a basic set of topologies [105] for both programming ease 
and efficiency reasons. PVM currently does not support topologies. The MPI standard 
dedicates a chapter to the discussion of a mechanism for describing arbitrary topology 
needs to the message passing system [46]. 

Of particular interest to ECO development is research done on grouping hosts on the 
basis of network topology. This technique has been used in two areas. Evans and Butt make 
use of this technique to facilitate load balancing [43]. In their approach, full load balancing 
information and communication occurs within subnets, while communication between sub- 
nets is more carefully controlled. Also related to this subject is the work of Efe on grouping 
related tasks together in a subnet for a system with deterministic task dependencies [41]. 
Both of these systems share ECO's principle of limiting communication between subnets. 
However, a major difference between these systems and ECO is that they attempt to avoid 
global communication whereas ECO tries to optimize it. Furthermore, only ECO addresses 
the issue of automatically identifying subnets. Magpie [67,68] was developed after ECO 
and performs similar optimizations as ECO, focusing instead on optimizing MPI-based 
collective communication across wide area networks. 

1.3.2   ECO's network characterization 

Several techniques were examined in the hope of developing a portable technique for au- 
tomatically and robustly adapting communication patterns to network topology. ECO uses 
a simple benchmark where the communication time between two hosts is measured by 
timing round-trip messages sent using PVM. This metric is desirable because it expresses 
the sum of all these terms, including the computational overhead of the message passing 
library, in a single measurable quantity. 

To measure these times, a program is run on all hosts that are anticipated to be used for 
running parallel programs. A host exchanges a message with another host several times. 
The total time is divided by twice the number of round trips and recorded. Several round 
trips are used for each measurement to minimize the influence of clock granularity. The 
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communication time is measured with one pair of hosts exchanging messages at a time, 
in order to prevent the program from causing network congestion that would distort the 
results. This exchange is repeated for each pair of hosts, and the whole process is repeated 
several times. This technique assumes a single route between machines. 

Although this measurement process is an 0(p2) process when run on p machines, for 
the environments for which ECO was designed, p was small, so it did not take excessively 
long and required little processor time, which should make it inexpensive for those who 
pay for CPU time. Since these results are used to determine physical network topology and 
are saved to disk, it is only necessary to perform the characterization on occasions when a 
change is made in the network or the location of machines. 

After the measurements are completed, it is necessary to label the communication time 
for each pair of hosts with a single value. It seems intuitive that the mean observed time 
would most accurately reflect the cost to communicate between hosts. However, experi- 
ence has shown that the mean time is a poor indicator, due to the large delay that can be 
caused by collisions. The high cost of delays caused by a brief burst of heavy traffic can 
be made worse by the exponential back-off scheme used on Ethernet. A single exchange 
that experiences this type of effect can skew the mean so that hosts that may share the same 
network bus appear to have a worse network connection than those hundreds of miles away. 
Although these collisions result from ambient traffic and should be accounted for, it would 
be necessary to run the analysis over a period of several hours to gain even an approximate 
measure of the frequency of these occurrences. 

Other possible measures are the minimum, maximum, and median times. The maxi- 
mum time will reflect the worst collision that occurred, as discussed above. The median 
time is likely not to reflect the delays caused by infrequent collisions or traffic burstiness 
if enough measurements are taken. The minimum time has been chosen for use by ECO, 
because ECO uses these measurements to determine the physical structure of the network, 
and the minimum time most accurately reflects this, as it reflects the least influence from 
ambient traffic. Using the minimum time also has the advantage of allowing the smallest 
number of measurements to obtain an accurate result. These results, which characterize the 
throughput of the communication links, are stored for use by the partitioning algorithm. 

1.3.3   ECO's communication pattern 

ECO begins by sending data between every pair of machines in the network, building the 
complete matrix of communication performance. It uses this information to partition the 
machines in the network into clusters of machines. Then a communication pattern is built 
between the clusters. 

The steps involved in building the pattern are: 

1. Divide the overall network into "subnets" consisting of hosts in the same physical 
network. A host is on the pfrne subnet as other hosts with which it has its lowest 
edge costs. 

2. Position the originator of the broadcast at the root of the tree. 
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initialize subnets to empty 

for all nodes 
node.min_edge = minimum cost edge incident on node 

sort edges by nondecreasing cost 

for all edges(a,b) 
if a and b are in the same subnet 

continue 
if edge.weight > 1.20 * node(a).min_edge or 

edge.weight > 1.20 * node(b).min_edge 
continue 

if node(a) in a subnet 
if (edge.weight > 1.20 * node(a).subnet_min_edge) 
continue 

if node(b) in a subnet 
if (edge.weight > 1.20 * node(b).subnet_min_edge) 
continue 

merge node(a).subnet and node(b).subnet 
set subnet_min_edge to min(edge, node(a).subnet_min_edge, 

node(b).subnet_min_edge) 

Figure 1.2: Algorithm used for partitioning the network into subnets 

3. Create a tree using the subnets as vertices rather than the individual processors. Edges 
on the tree now represent inter-subnet communication. 

4. Optimize the intra-subnet communication using patterns appropriate to each subnet's 
network type. 

The algorithm used to partition hosts into subnets is given in Figure 1.2. The key 
criteria for subnet membership is that the cost of the edge between them be within 20% of 
the cost of the least expensive edge incident to each of them and within 20% of the lejast 
expensive edge within the subnet. Although arbitrary, the 20% cutoff has proven excellent 
at accurately partitioning networks of machines available at CMU and PSC. 

Note than when a node is added to a subnet the algorithm does not check that the cost 
of all edges from the new node to members of that subnet are within 20% of the new 
node's minimum cost edge. This has the advantage that a small number of inaccurate 
measurements can be made in the network timings without causing incorrect partitioning. 
This fault tolerance allows for the initial measurements to be taken more quickly, since a 
single inaccurate measurement should have few consequences. 

The partitioning need only be done once per network. Characterization and partitioning 
need only be redone by the user when the physical network changes. The results of the 
partitioning are stored in a file which is loaded when an ECO program is run. 
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Table 1.1: 

method mean(std.dev.) median minimum 
ECO 
tree(/c = 2) 
tree(fc = 3) 
star 

0.119(.008) 
0.174(.007) 
0.162(.007) 
0.141(.007) 

0.0651 
0.128 
0.122 
0.109 

0.0614 
0.104 
0.104 
0.104 

Time, in seconds, for a 16000 byte broadcast on eight DEC 
Alphas 

1.3.4 Example 

Figure 1.3 shows the application of ECO's technique to a network of machines at CMU 
and PSC. Figure 1.3(b) shows that ECO successfully distinguishes between networks with 
large differences in performance, such as switched FDDI and Ethernet, as well as between 
Ethernet networks separated by a bridge. The ring-topology generated by ECO is shown in 
Figure 1.3(c). The broadcast tree generated by ECO is shown in Figure 1.3(d). 

1.3.5 Micro-benchmarks 

Due to the inherent difficulty in timing a parallel operation, only the performance of oper- 
ations that are started from the root, such as broadcast, have been measured directly. The 
measurements were taken by determining the offsets between system clocks among the 
machines used, recording the time before the operation began, and determining the latest 
time at which the message was received. Clock drift or adjustments can be a factor in such 
experiments, but drift was not a factor over the time period of the measurements, and the 
machines were not running a daemon, such as xntpd, that would adjust their clocks during 
execution. 

Results are shown in Table 1.1 for the broadcast of a message of 16000 bytes on eight 
DEC Alphas, distributed among three 10 Mb Ethernet segments joined by a Cisco 7505 
bridge. In this case, the butterfly pattern would produce the same results as the binary tree. 
The measurement was repeated 1000 times with relatively little ambient traffic. 

1.3.6 Application programs 

ECO has been used to provide collective communication for CHARMM [21], a macro- 
molecular dynamics program used by many chemists. CHARMM's implementation of 
collective communication uses a butterfly pattern, the performance of which has been op- 
timized fairly heavily. It uses PVM with in-place data packing and has almost no compu- 
tational overhead in its collective communication routines. The collective communication 
used by CHARMM in this benchmark consists of a large number of broadcasts, gather-to- 
all, and reduce-to-all operations. 

The same set of eight DEC Alphas used in Section 1.3.5 was used to run CHARMM. 
The measurements were taken during periods of low ambient traffic and repeated five times. 
Table 1.2 shows the results. 
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Figure 1.3: ECO's behavior on a heterogeneous network: a) physical net- 
work, b) ECO's partitioning into subnets, c) ECO derived ring topology, and 
d) ECO derived collective communication pattern 

pattern mean(std.dev) median minimum 
ECO 2.102) 2.17 1.79 
tree(fc = 2) 2.1(A) 2.66 2.65 
tree(fc = 3) 23(A) 2.30 2.12 
star 2.1(2) 2.59 2.47 
CHARMM butterfly 3.0(A) 2.95 2.69 

Table 1.2: Communication time, in minutes, for CHARMM running on a 
network of eight DEC Alphas 
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pattern mean 
ECO 
tree(fc = 2) 
tree(fc = 3) 
CHARMM butterfly 

13.9 
18.7 
21.6 
16.6 

Table 1.3: Communication time, in minutes, for CHARMM running on a 
network of eight DEC Alphas with high ambient traffic 

pattern time 
ECO(k = 2) 
ECO(fc = 3) 
CHARMM butterfly 

1.08 
3.28 
0.82 

Table 1.4: Communication time, in minutes, for CHARMM on a switched 
Ethernet network of eight SGI INDYs 

Measurements were also taken on an Ethernet with high levels of ambient traffic. These 
are shown in Table 1.3. In order to minimize intrusion upon other users in our environment, 
only two runs were made. Therefore, additional statistical results are not presented. 

In order to evaluate the overhead of ECO's routines, CHARMM was also run on a set 
of eight SGI INDYs connected with switched 10 Mb Ethernet. This type of network should 
be ideal for the butterfly patterns used by CHARMM's native communication. ECO was 
run with k — 2 and k = 3 trees for the single subnet. (Note that since there is only one 
subnet, choice of the local pattern is the only issue to be considered.) There was no other 
traffic on the network. The results in Table 1.4 indicate that there is a slight overhead 
inherent in using ECO, as indicated by the results for A; = 2. The results for k = 3 show 
the importance of matching the appropriate communication pattern to each subnet. Using 
wider trees is important on bus-based networks, since it reduces the number of messages 
that are attempted in parallel, but it degrades the performance on a switched network that 
can handle the aggregate bandwidth. 

ECO has also been used to implement the collective communication for Dome [3]. A 
molecular dynamics program written in Dome has been run on a network of 20 machines, 
consisting of six DEC Alphas attached to two Ethernets, five IBM Power PCs attached to 
an Ethernet, two DEC Alphas attached to switched FDDI, and seven SGI INDYs attached 
to switched Ethernet. These tests were run using four communication patterns: ECO's 
optimized pattern, star, tree (k = 4), and ring. The times for communication required by 
this application are shown in Table 1.5. I have not yet run CHARMM on a heterogeneous 
collection of machines. 

Dome also makes use of ECO's topology function, using a ring topology for its load- 
balancing communications. Use of this function prevents the user from having to order the 
machines by hand to ensure quick load-balancing and reduces the load-balancing commu- 
nication time by more than half compared to times for a randomly distributed arrangement 
of nodes. 
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pattern mean 
ECO 63.0 
star 153.5 
tree(fc = 4) 148.1 
ring 414.2 

Table 1.5: Communication time, in seconds, for a Dome molecular dynam- 
ics application 

1.3.7   Lessons from ECO 

The algorithm in Figure 1.2 presented several problems at the time of development and 
as time passed. While developing the code, it was difficult to obtain measurements that 
reliably and consistently differentiated between the different portions of the network. Al- 
though those problems were mostly solved by careful implementation, it remained neces- 
sary to check the output of the network partitioning code for any obvious mistakes caused 
by unusual network behavior during the analysis. 

Furthermore, as the networks at CMU and PSC that ECO was originally developed on 
were upgraded, it became even more difficult to distinguish between the different portions 
of the network using such simple tools. Although there were still bottlenecks between 
different segments of the network, the switching latencies quickly decreased. If the bottle- 
neck segments were not congested during the measurements, then there were sometimes 
no measurements to indicate that a bottleneck segment existed and would cause a problem 
when the application attempted several simultaneous data transfers across that segment. 

Even when done accurately, the time required to perform the 0(P2) measurements 
was quite high. This was acceptable for a package that was intended to be run once to 
capture the physical topology of the network and the results saved, but inappropriate if 
more current information was desired. More importantly, if more machines were added to 
the environment, the entire experiment had to be repeated. 

The lessons from ECO were not, however, entirely negative. Once the data was col- 
lected, the performance gains achieved using the information in a rather straightforward 
manner were significant. These performance improvements were what led me to pursue a 
better way to obtain network topology and utilization information. 

1.4   Network measurement techniques 

ECO is an example of using one type of benchmarking to measure the performance of a 
network. This section discusses benchmarking, as well as other techniques used to measure 
the performance of a network. 

Understanding the types and causes of network congestion is important for designing 
techniques to measure and predict that congestion. As described in Section 1.2, network 
congestion 

• can occur in all types of networks, 
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• is due to competing traffic from other sources, which is constantly changing, 

• is dependent on the networking architecture and dropping policies of the hardware 
and software, and 

• is dependent on the topology of the network, which governs the path needed to go 
from source to destination and the competing traffic met along the way. 

Given these complexities, this section focuses on several different techniques for discover- 
ing the behavior of the network. 

All the bandwidth prediction techniques described here rely on the same basic time 
series prediction models, which use a series of measurements to make predictions of future 
behavior. The difference between the three techniques is what measurements are taken and 
how they are converted to a prediction of application performance. Ideally, the series of 
measurements is taken by an independent daemon that collects the data for later use when 
a user wishes to run an application. A mathematical model is fit to the series. When a 
user requests a prediction, future performance is extrapolated from the model that has been 
fit to the past data. Selection and use of time series models has been dealt with by many 
authors [19,36,116]. In my notation, time series models are indicated by a t subscript on 
the measurement that is used for the series. 

Regardless of the model chosen for prediction of future behavior, the first choice is 
selecting a method for determining the network's current status. Once that information is 
discovered, a variety of techniques can be chosen to make the actual prediction. 

1.4.1 Application-based 

The most straightforward measure of an application's performance is obtained by running 
the application on the network. Similarly, the most straightforward prediction of an appli- 
cation's future performance on that network is obtained using the application's performance 
history on that network to predict its future performance. The performance of an applica- 
tion A running on a network Af is denoted A(Af). The time series model At{M) can be 
used to predict the application's performance on the network. 

Unfortunately, the many combinations of applications, parameters, and resource selec- 
tions make gathering enough application history information to provide useful predictions 
infeasible. For this reason, other prediction techniques must be considered. 

1.4.2 Benchmark-based 

Benchmarking solves many of these problems by using a small set of representative ap- 
plications, called benchmarks or probes, to predict the performance of many applications. 
The performance of the benchmarking application is denoted B(Af). Again, a time series 
of benchmarks can be used to form a prediction, Bt(Af), of how the benchmark B will 
perform on the network Af in the future. 

The challenge with using benchmarks for performance predictions is the mapping from 
benchmark performance to application performance. One method is to make the assump- 
tion that the relative performance of the application and benchmarks are the same, so the 
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best connection for the application is assumed to be the same as the best connection for the 
benchmark. This approach is often useful for parallel applications whose only concern is 
moving the data as quickly as possible. 

The lack of quantitative information about the application's performance, however, pre- 
vents this technique from being useful in many situations. It does not answer the question 
of which connections are sufficient for the application's needs, nor does it provide infor- 
mation necessary for setting application quality parameters. Quantitative information is 
needed for these decisions. 

Benchmarking can be used to provide quantitative information, and for some applica- 
tions, a benchmark will perform similar operations so that the results can be used with a 
simple rescaling. In other cases, such as using a TCP-based benchmark to predict the per- 
formance of a multimedia application that can handle loss, one must develop a model of 
the network conditions that caused the benchmark's performance and then determine how 
the application will perform under those same conditions. A mapping function converting 
the predicted performance of the benchmark to a model of the network can be written as 
M(Bt(M)). A prediction of application performance based on this network model can be 
written An{M(Bt{M))), where the subscript n is used to denote a performance prediction 
for the application A based on a network resource model. 

1.4.3   Packet train analysis 

Rather than using end-to-end applications to benchmark network performance, it is also 
possible to derive network performance from more fundamental end-to-end behaviors of 
a network. Packet train analysis is one technique of doing this. Rather than using actual 
application data, packet train analysis involves sending a series of packets back-to-back, 
referred to as a packet train. By observing the interarrival time of these packets, which is 
determined by the congestion encountered along the path, the bandwidth available on the 
network can be inferred. 

Carter and Crovella's packet-train probes, called bprobe and cprobe, use interarrival 
times of ping packets to measure the bottleneck and available bandwidths along a path [24]. 
Bprobe measures the minimum interarrival time of a series of pings. With the assumption 
that the minimum time corresponds to successfully queueing two packets in sequence on 
the bottleneck link, the time, when measured accurately, reflects the bandwidth of that 
link. This technique implies a number of assumptions about the networking hardware and 
software, such as FCFS tail-drop queueing and symmetric routes. Cprobe measures the 
time a series of ping packets take to make the round trip, and is used to determine the 
competing traffic present while the packets are being transmitted. 

A packet train approach is an example of a minimally invasive active measurement. 
Although it can learn more about the network by sending less information than a pure 
application-level benchmark approach, the basic architecture is the same. 
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1.4.4    Limitations of these techniques 

Application, benchmark, and packet train analysis all rely on sending data across the net- 
work to obtain the measurements needed for performance prediction. This chapter has 
already described many of the factors in network design and use that come into play in 
determining network performance. Gauging network performance by sending data has the 
advantage of treating the network like a black box, which avoids these complexities. But 
there are a number of limitations that are shared by these three techniques. 

Scalability 

Sending data between two machines is an excellent way of measuring the network's perfor- 
mance between those two machines. Unfortunately, applications that can choose between 
many machines require more information. Examples include: 

• selecting one of several machines for a long-running application, 

• selecting the best n machines for a parallel computation, 

• a real-time scheduling application that forwards tasks to the best-available machine, 
and 

• selecting machines in a collaborative environment where information is needed for 
choosing servers to work together with several desktops distributed across the net- 
work. 

Each of these situations requires knowledge of the network performance between more 
than a single pair of machines. The minimal amount of information required to solve these 
problems is the network performance between each pair of potential servers, and between 
each desktop and all of the servers. Because modern operating systems allow desktop 
machines to function as servers, these problems can only be solved with knowledge of 
the communication performance between all pairs of machines. If P is the number of 
machines in the system, this is an 0(P2) problem. Even for the number of machines that 
might be found in a small department, perhaps P = 100, taking a measurement of network 
performance every five minutes would require over thirty measurements per second. Even 
if that is a tolerable fraction of the network's bandwidth, it makes it impossible to take a 
snapshot of the entire network simultaneously, or to observe the dynamic behavior of the 
LAN over shorter time intervals. 

By grouping machines by location, it is possible to perform the benchmarks more ef- 
ficiently [48]. For example, in the network shown in Figure 1.4, the network has been 
divided into the WAN, enclosed by the circle, and three LANs outside the circle. Measure- 
ments of the WAN's performance can be taken between the three machines on the circle, or 
between other machines in the different LANs in the common case where there is no con- 
gestion on the LAN worse than that in the WAN. In each individual LAN, measurements 
of the performance between the machines within that LAN, as well as the border machine, 
can be taken. These measurements can then be aggregated to provide a complete picture of 
network performance between machines in all three LANs. 
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Figure 1.4: Several LANs joined by a WAN. The hierarchical structure of 
networks lends itself to partitioning performance measurement in a hierar- 
chical fashion. 

These techniques may be effective in some cases, but not in all. First, machines must 
be placed appropriately to measure across the WAN. Although unusual, if there is a bottle- 
neck between the selected machine and the WAN, the measurement may not be useful to 
the other machines in the network. Secondly, even this solution does not make the tech- 
nique scalable. The technique may allow larger number of machines at each site, but the 
overall technique is still 0(P2) in the number of sites across the WAN. Placing machines 
at appropriate locations in the network to scale this solution across large numbers of ma- 
chines in terms of both the number of machines at each site and the number of sites is very 
difficult. 

Invasiveness 

Another fundamental problem of measuring network performance by sending data across 
the network is that it quite naturally disturbs the system its measuring. Obtaining a predic- 
tion that 10Mbps is available on the network is useless if the measurement system is using 
that 10Mbps 25% of the time. Similarly to the uncertainty principle in quantum mechan- 
ics, a field widely believed to be as nebulous as networking, it is impossible to measure a 
network's performance without disturbing it in some way. 

The packet train approach is an attempt to measure a network's performance with less 
disturbance to the network's capacity. However, it is unclear that the large number of 
samples needed to obtain an accurate prediction make it ultimately less invasive. 

Topology 

Finally, none of these measurement techniques provide information about topology. At first 
glance, knowing a network's topology may seem useful only as a way of improving the 
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Figure 1.5: Four networks used to connect ten machine, each of which 
produces 10Mb for a single measurement, but whose performance varies 
widely when used in parallel. 

scalability of the predictions. However, it is much more important for accurate predictions 
of the performance of parallel applications. 

Consider the networks shown in Figure 1.5. These networks demonstrate four different 
ways in which it is possible to connect ten machines using simple off-the-shelf hardware. 
In each case, the bandwidth measured between any single pair of machines will be 100Mb. 
However, if these machines are used by a parallel application sending data between mul- 
tiple pairs of machines simultaneously, their performance will vary tremendously. In Fig- 
ure 1.5(a), a switch is used to connect the machines, so the full 100Mb bandwidth is avail- 
able to each machine. Figure 1.5(b), however, represents a network where a hub was used 
instead of a switch. This architecture saves money, but now all machines share the same 
logical segment of Ethernet, so they share the same 100Mb bandwidth. In Figure 1.5(c), 
two different switches have been used to connect the two halves of the network. Here, the 
full bandwidth of the network can be used if each set of five machines is communicating 
internally, but if multiple messages are communicated between the two network halves, 
performance will be reduced. This bottleneck is removed in Figure 1.5(d), where a gigabit 
Ethernet link is used to connect the two switches, instead, again eliminating the bottleneck. 

Figure 1.5 is an excellent example of situations where benchmarking cannot provide 
the information needed to support parallel applications. Technically, these problems can 
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be overcome by performing multiple simultaneous benchmarks to determine whether there 
are correlations in the performance of separate connections. Unfortunately, this also raises 
the complexity of the technique to an infeasible 0(P\). 

Manually providing the topology to the benchmarking tool allows for application-level 
sharing to be predicted and could solve the problems with some networks. However, even 
with knowledge of the topology, sometimes the performance of an application cannot be 
predicted with simple end-to-end benchmarks. In Figure 1.5(d), for instance, if applications 
running on other nodes unseen in the network are consuming 700Mb of the gigabit link, 
there is no way that an end-to-end benchmark between a single pair of machines can deduce 
that there will now be a bottleneck there if all ten machines are communicating in parallel. 

This behavior is a downside to the beauty of networking protocols. Modern network 
architecture is completely transparent to the end-user. The network-as-a-black-box design 
has allowed great advances in simplifying the development of distributed applications, but 
makes it virtually impossible for the end-user to optimize network performance. Similar 
lessons have been learned from other systems that provide simple interfaces to complex 
systems. Consider advanced SMP systems, such as the SGI Origin. The complexities of 
managing the distributed memory are completely hidden from the user, making it possible 
for anyone to write a high-performance shared-memory program. However, to achieve op- 
timum, or in some cases acceptable, performance, it is still necessary to write the program 
taking the architecture of the system into account. 

1.5   Network-based measurement 

To maximize the usefulness and portability of distributed applications, these three limita- 
tions must be overcome. Fortunately, there is an alternative. Rather than using end-to-end 
measurements to determine the performance of the network, consider using the status of the 
network components themselves to predict the performance of the end-to-end application. 
Although this is a more complex solution requiring several steps to reach the desired pre- 
diction of application performance, there are advantages that make up for the complexity. 

Scalability Rather than having complexity of 0(P2), this technique has only linear com- 
plexity in the number of network components, or 0(\Af\). Given the hierarchical 
structures used by networks, this complexity expands to 0(P log P), which is man- 
ageable over extremely large networks. 

Invasiveness If the amount of traffic passing through the network can be obtained from the 
network devices themselves, then their internal monitoring capabilities can be used 
to do the actual work, and the only additional traffic traversing the network will be 
the queries. Assuming these queries are reasonably efficient, this technique should 
not disturb the network significantly. 

Topology Obviously obtaining the network's status directly from the network results in 
detailed knowledge of the network's topology, needed for predicting the performance 
of parallel applications that send multiple messages simultaneously. 
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A snapshot of the network A/\ consisting of the status of all parts of the network at the 
same instant, is denoted N. Using a history-based prediction of the network snapshot, Nt, 
an application's performance can be predicted as An(Nt). 

The three techniques described here for obtaining a prediction of an application's future 
performance running on J\f, denoted A (A/-), are described by the following equations: 

{At(J\f) Application-based 
An(Nt) Network-based 
An(M(Bt{N)))   Benchmark-based 

M     real network 
N     network status snapshot 
A      application 
B      benchmark 
■A(A/")performance of A running on J\f 
At()  time series performance prediction of A 
An() network model performance prediction of A 
M()  mapping function inferring network status 

from benchmark performance 

Figure 1.6 conceptually illustrates how these techniques interact with the network to 
predict application performance. 

1.6   Using network-based prediction 

The shortcomings of the application-level approaches to network performance measure- 
ment and application optimization motivate a new approach to the problem of network 
analysis and prediction. Rather than measuring the network's behavior at the application 
level, I propose to characterize the network at the lower component level. I will demon- 
strate that the low-level details obtained from network components provide the information 
needed by distributed applications to adapt themselves to modem network environments. 

Low-level information solves the problems inherent with the application-level ap- 
proaches. The low-level information 

• provides a scalable solution to the performance prediction problem, 

• can be obtained with minimal overhead, and 

• offers the topology information needed for adaptation. 

To demonstrate that providing low-level network information to applications is both 
feasible and useful, I address a variety of issues in this dissertation. 

Application requirements A wide variety of applications benefit from the knowledge ob- 
tained through low-level information about the network's structure and status. The 
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Figure 1.6: Conceptual diagram of options for prediction. The dashed ar- 
rows illustrate the actual application being run on the network as a probe of 
its status. The solid arrows illustrate the conceptual paths taken to predict 
an application's performance using data obtained by running the application 
itself, by obtaining information directly from the network, and by using a 
benchmarking program to determine the network's performance. 

importance of topology information to collective communication was described in 
Section 1.3. Processor selection, discussed in Section 4.3, is another common need 
of distributed applications that can be done well using low-level information. The 
particular knowledge available at the network level also allows better models to be 
built for application performance, such as that discussed in Section 4.4. By showing 
that common operations benefit from low-level information, I demonstrate the true 
general application that low-level network information has to many applications. 

Interface The low-level information can be made available through a portable, high-level 
interface. Chapter 2 describes Remos, a system I have co-designed that provides the 
needed information to applications. The most significant challenge in the design of 
Remos is providing information about low-level network behavior without sacrific- 
ing the portability enjoyed by distributed applications. Remos maintains portability 
by providing a best-effort virtual representation of the network's topology, attempt- 
ing to represent the behavior of the network over its actual structure. To support 
applications with simpler needs, Remos also provides flow queries that allow the 
application to obtain predictions of application-level performance without analysis 
of the network topology or a loss of information in the conversion to the portable 
representation. 

Shortcomings of high-level techniques My thesis, that low-level knowledge is the best 
way to predict and optimize application-level performance, runs counter to a great 
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amount of common practice and belief. Networking is generally treated like a black 
box at the application layer. Although networking research is becoming more com- 
mon in recent times, few people have proposed breaking this boundary down, prefer- 
ring to offer advanced network services, but maintain the fundamental boundary. I 
have already discussed some of the techniques used for network measurement. After 
describing the network-based techniques in more detail, I will discuss some of the 
differences, particularly in terms of scalability and invasiveness, in Section 3.6. 

Providing end-to-end predictions Although the topology and scalability advantages of 
using low-level information are clear, the more challenging questions arise when 
considering how to provide predictions of application-level performance relying on 
the low-level knowledge. Chapter 3 describes the network-based performance pre- 
diction technique and presents several experiments demonstrating that its accuracy is 
similar to that of application-based approaches. 

Topology discovery The topology information available through the low-level network 
information is one of the most important advantages of this approach. Chapter 4 
describes how topology information can be acquired using SNMP. At the IP level, 
topology information is quite easy to extract, but level 2 networks are frequently 
more challenging. Much of this chapter is dedicated to a description of how to deter- 
mine the topology of the bridged Ethernet, the most common local area network in 
use for the past decade. One of the most significant challenges in designing this algo- 
rithm is dealing with the incomplete forwarding knowledge that is available from the 
bridges. I present an algorithm which is provably good when faced with incomplete 
information. 

Feasibility The low-level approach to network characterization and performance measure- 
ment is implementable today. Both Chapters 3 and 4 describe techniques that have 
been implemented and tested using modern commodity hardware. Although access 
to low-level knowledge of wide area networks is typically limited, due to business 
concerns, there is no technical reason why this approach cannot be implemented to- 
day. 

The core question my dissertation addresses is whether the violation of the end-to-end 
systems principle is warranted for network characterization and performance prediction. 
I will show that it is both necessary to violate this principle and possible to do so with 
minimal sacrifices. To answer this question, I take a top-down approach, beginning with 
why access to low-level information is needed at the application layer and concluding with 
how it can be accomplished at the network layer. 
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Chapter 2 

Remos 

Remos was developed to meet the resource information needs of adaptive applications. It 
sits between the application and the variety of networking resources, computing resources, 
and software systems used to control them. The principle design goal of Remos was aggre- 
gation of the variety of information available from these systems into information accessi- 
ble and useful to as many applications as possible. This goal necessitated the development 
of a standardized way of representing data about the capabilities of the networks supported 
by Remos. 

This chapter addresses the question of how low-level network information can be made 
available to high-level applications in an accurate and portable manner. Such an interface 
must support both low-level information, such as topology and link-by-link capacity and 
utilization, as well as high-level information, such as end-to-end flow bandwidth and pre- 
diction of future performance. Remos addresses these issues, although compromises arev 

necessary in places where maximizing portability is at odds with maximizing the accuracy 
of the low-level information. The diverse interests of the people involved in the devel- 
opment of Remos has helped ensure that its design meets the needs of a wide variety of 
applications. 

The Remos system is the product of work by a large number of people. As one of 
the original designers of the interface, and the most outspoken proponent of the topology 
interface, my contributions to it have included the initial proposal for the topology interface, 
working with a small group to combine the various ideas into a coherent interface, and 
participating in many design meetings with other members of the Remulac project. I also 
designed the original collector-modeler protocol and designed and implemented the bridge 
collector. Much of the content of this chapter is based on my own ideas, but there is no part 
of Remos that is not made up of the contributions of many people. 

2.1   Overview 

Networked systems provide an attractive platform for a wide range of applications, yet 
effective use of the resources is still a major challenge. A networked system consists of 
compute nodes (hosts), network nodes (routers and switches), and communication links. 
Network conditions change continuously due to the sharing of resources, and when re- 
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Remos 
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Figure 2.1: Remos is divided into two primary components. The Remos 
API, which is described in this chapter, is provided as a library applications 
can link with to obtain the network information they require. The actual data 
gathering component of the Remos architecture exists as a suite of separate 
programs and will be described in Section 2.9. 

source demands exceed resource availability, application performance suffers. Congestion 
on network nodes and links can reduce the effective bandwidth and increase the response 
time observed by applications. On compute nodes, competing jobs and higher-priority 
activities reduce availability. An attractive way of dealing with such changes is to make 
applications system-aware, i.e., the application periodically adapts to the system in an 
application-specific manner. 

The Remos system provides applications with a query-based interface to their execution 
environment including the network state. It is designed for experiments with the coupling 
of network-aware applications and network architectures. The Remos system has its roots 
in two separate projects: an investigation of resource management in application-aware 
networks (Darwin) and an effort to support system-aware applications through libraries, 
frameworks, and tools (Remulac). 

Network-aware applications must be able to obtain information about resource avail- 
ability, in particular, the network's capabilities and status. Unfortunately, network archi- 
tectures differ significantly in their ability to provide such information to a host or to an 
executing application. To avoid dependences on the idiosyncrasies of network architec- 
tures and communication systems, application development for networks requires a system- 
independent interface between applications and networks. A uniform interface allows the 
development of portable applications that can adapt on a range of network architectures. 
Furthermore, a system-independent interface is crucial for allowing applications to adapt 
on heterogeneous networks, where components are realized with different network tech- 
nologies. 
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The general architecture of Remos is depicted in Figure 2.1. The Remos API, which is 
the principle topic of this chapter, exists in the middle of this architecture. Above it lie the 
many different applications that may make use of the information made available through 
the Remos API. Applications may communicate directly with the Remos API, or they may 
be developed using libraries or other middleware that uses Remos internally to provide 
services to the application. Below the Remos API lies the implementation of Remos needed 
to gather the information to answer queries made to the API. The architecture of this will 
be briefly described in this chapter, but details about the measurement techniques used to 
provide this information will be left for later chapters. 

As indicated by Figure 2.1, Remos lies between the network-level hardware and the 
application layer. The purpose of this chapter is to demonstrate that it is possible to take 
low-level information and provide it in a portable format suitable for use by applications. 
Making the transition from low-level to high-level is crucial for taking advantage of the 
information available at the network-level. 

2.2   Design challenges 
In this section we discuss the problems that a common, portable interface like Remos must 
address. In the next section we present the design for the Remos system and explain how it 
addresses the challenges presented here. 

2.2.1 Dynamic behavior 

We must characterize network properties that can change very quickly. Moreover, appli- 
cation traffic can have widely different characteristics, so applications may want access to 
different types of information. For many data intensive applications, the burst bandwidth 
available on a network may be more important than the average bandwidth. In contrast, 
applications that stream data on a continuous basis, such as video and audio applications, 
may be more interested in the available bandwidth averaged over a longer time interval. 
The Remos interface should satisfy these diverse requirements. 

An application is most interested in the expected traffic on the network in the future. 
A preview of future properties would allow the application to adjust to the actual situation 
encountered in the next t units of time. Unfortunately, information on future availability of 
resources is impossible to find in general, although some sophisticated network manage- 
ment systems may be able to provide a good estimate based on the current knowledge of 
applications and their resource usage. This is an ongoing research problem. 

2.2.2 Sharing 

Connections (as seen by the applications) will usually share physical links with other con- 
nections of the same and other applications. This dynamic sharing of resources is the ma- 
jor reason for the variable network performance experienced by applications, and Remos 
should consider the sharing policy when estimating bandwidth availability. 
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An important class of applications that Remos attempts to support is parallel and dis- 
tributed computations that simultaneously transfer data across multiple point-to-point con- 
nections. This kind of traffic pattern is typical of large-scale scientific computations (when 
mapped onto a distributed system) and distributed simulations. Since multiple parallel data 
transfers may be competing for the same resources, Remos should consider all exchanges 
in a data transfer step collectively rather than separately for each pair of endpoints. Again, 
this will require characterizing sharing behavior. 

Determining a solution to the problem of characterizing the performance of multiple si- 
multaneous data transfers is complex due to the interactions between the specific topology, 
network sharing policies, and the timing of messages. 

2.2.3 Information diversity 

Most installed networks do not have facilities that can directly provide the information 
applications need to adjust their resource demands. For that reason, highly portable, stan- 
dard protocols such as TCP/IP rely on indirect mechanisms to obtain information about the 
network status, for example, dropped packets indicate congestion. 

The information that may be of interest to applications includes static topology, routing, 
dynamic bandwidth (possibly averaged over different time intervals), and packet latency. 
Different types of information are generated by different entities, are maintained in different 
formats and locations, and change on different time scales. For example, some information 
may only be available through a static database, perhaps maintained off-line by a system 
administrator. Other information may be accessible in a systematic fashion using protocols 
such as SNMP [25]. Finally, some information, such as packet latency, is not routinely 
collected and may have to be measured directly by the Remos system using benchmarks 
specifically developed for this purpose. 

2.2.4 Heterogeneity 

Networks differ significantly in how much information they collect and make available. 
For example, dynamic link utilization of point-to-point links connecting routers can often 
be obtained through SNMP. However, shared Ethernets typically do not have a single en- 
tity collecting information on network utilization. Some networks do provide very specific 
feedback to endpoints on available network bandwidth as part of traffic management (flow 
control). The most important example is Available Bit Rate (ABR) traffic over ATM net- 
works, where rate-based [18] or credit-based [26,70] flow control tells each source how 
fast it can send. This information is currently only used at the ATM layer, but could be 
made available to higher-layer protocols or applications. 

The challenge in designing a portable interface is to find a way to cover the entire 
range from currently deployed networks such as shared Ethernets with very large numbers 
of users, to more advanced commercial networks such as ATM. For an interface to be 
useful, it is not necessary that all information is available for every network. Sometimes 
partial information, such as static link capacities, may have significant value to applications. 
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However, dealing with partial information is likely to make application development more 
complicated. 

2.2.5    Level of abstraction 

One of the thorny issues in designing an interface between applications and networks is 
deciding what aspects of the network should be exposed to applications. This problem 
shows up in a number of contexts. 

One issue is heterogeneity. As discussed earlier, hiding network-specific details is im- 
portant for portability, but it is not always clear how to do that without losing important 
information. A second example concerns limiting the volume of information provided to 
the application. Since all relevant hosts may be connected to the world-wide Internet, we 
need a way to limit the amount of information returned to an application, since providing 
information on the entire Internet is both unrealistic and undesirable. In some cases the 
scope of the query can be limited easily. For example, applications restricted to a LAN 
will only need information about the LAN. In other cases, solutions are less obvious. For 
example, how do we limit information for an application using three hosts, one located at 
Carnegie Mellon University, a second at ETH in Zurich, and a third on a plane flying from 
the US to Japan? 

Another important problem is management of routing information: if there are multi- 
ple paths between two hosts A and B, a network architecture may use different paths for 
individual data units (packets) traveling from A to B, and these paths may exhibit vastly 
different performance characteristics. Exposing this detail to the application is problem- 
atic since it is at a low level and changes rapidly. Furthermore, current protocols do not 
allow applications to influence routing, or even request that routing remains fixed. There- 
fore the fact that there are multiple physical paths, and that specific routing algorithms are 
responsible for performance differences and changes, is of limited value to applications. 
On the other hand, hiding the information is not without problems if the two paths differ in 
bandwidth or congestion. 

All these problems center around the same question: what is the right level of abstrac- 
tion for network information provided to the application. One option is to present the entire 
network topology, along with routing information and the characteristics of each link and 
node on the network. Such a description would provide all possible information, but it in- 
cludes many details that are not relevant to most users of Remos, and it may be difficult to 
interpret. The other extreme is to provide the information at a much higher level, focusing 
on the performance characteristics that may be of interest to the application. This interface 
would be easier to use and the problem of information overload is avoided. However, in 
some situations, this may lead to information being vague and inaccurate, and potentially 
useless to applications. 
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Figure 2.2: The two query abstractions supported by Remos are illustrated 
here. As each query passes through the abstraction layer between the ap- 
plication and network levels, information is lost. A user should select the 
best query for an application by evaluating the complexities of the applica- 
tion's adaptation options and whether any unusual network support might 
be available that is not reflected in the standardized topology description. 

2.3    Remos design principles 

The guiding principle in the development of Remos was to provide as much information 
about the network as possible without sacrificing portability of the interface. There is an 
obvious conflict, however, between maintaining portability and maximizing the informa- 
tion presented. 

The basis of this conflict is inherent in the standardization process—both applications 
and networks are sufficiently diverse that there is no clear way to describe all of their 
capabilities. There is information loss whether the network description is standardized for 
use at the application layer, or if the application description is standardized for use at the 
network layer. There is even more loss if both descriptions are standardized for a totally 
independent scheduler. Because we wished to minimize information loss while maximizing 
portability, we elected to support two different types of queries in Remos. The two query 
types are illustrated in Figure 2.2. 

The first, flow-based queries, is used when the application itself is fairly simple, or 
wants to evaluate the performance a particular communication pattern will receive from 
the network. These queries require a standardized description of a communication pattern 
to be used by the application. This introduces information loss, but if the application's 
communication needs are simple, that loss should be minimal. The standard description is 
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then passed to the network layer, which is free to use whatever network-specific knowledge 
it has to respond to the query. 

The second type of query is the topology query. The topology query is useful for the 
opposite problem, when an application is rather complex, and its options for network uti- 
lization are too complex or would take too many separate queries to evaluate using the flow- 
based queries. In the topology query, the network's representation, including topology, link 
capacity, and utilization, is passed to the application layer in a standardized format. Again, 
this process introduces information loss, but it enables applications to make decisions such 
as task placement without incurring exponential costs. 

The following sections will describe the two query styles in detail and review their 
advantages and disadvantages. 

2.4   Flow-based queries 

A flow is an application-level connection between a pair of computation nodes. Using flows 
instead of physical links provides a level of abstraction that makes the interface independent 
of system details. All information is presented in a network-independent manner. While 
this provides a challenge for translating network-specific information to a general form, it 
allows the application writer to write adaptive network applications that are independent of 
heterogeneity inherent in a network computing environment. We will discuss several of the 
important features of the flow-based query interface in the remainder of this section. 

2.4.1    Multiple flow types 

Applications can generate flows that cover a broad spectrum. Flow requirements can range 
from fixed and inherently low bandwidth needs (e.g. audio), to bursty higher bandwidth 
flows that are still constrained (e.g. video), to unconstrained flows that can consume any 
available bandwidth, but may not have any quality requirements. Different flow types may 
require different types of queries. For example, for a fixed flow, an application may be 
primarily interested in whether the network can support it, while for an unrestricted flow, 
the application may want to know what average throughput it can expect in the near future. 

Remos collapses this broad spectrum to three types of flows. A first type consists of 
fixed flows that require a specific bandwidth. A second type consists of variable flows. 
Flows in this category can use larger amounts of bandwidth, and the bandwidths of the 
flows are linked in the sense that they will share available bandwidth proportionally. For 
example, three flows may have bandwidth requirements of 3, 4.5, and 9 Mbps relative to 
each other; the result of a corresponding Remos query may be that the flows will get 1, 1.5 
and 3 Mbps respectively. A third type consists of independent flows, for which the user 
would like to know how much bandwidth is available after the requirements of the first two 
classes have been satisfied. Each independent flow is considered independently. These can 
be viewed as lower priority flows, or used to select between several choices the application 
has for communication. 
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Simultaneous flow queries may specify flows of any types. The combination of different 
flow types allows a wide variety of situations to be described concisely. 

2.4.2 Simultaneous queries and sharing 

Flows may share a physical link in the network. At bottleneck links, this means that flows 
are competing for the same resource, and each flow is likely to get only a fraction of the 
bandwidth that it requested. Of particular interest is the case where multiple flows be- 
longing to the same application share a bottleneck link. Clearly, information on how much 
bandwidth is available for each flow in isolation is going to be overly optimistic for all flows 
together. Remos resolves this problem by supporting queries for both individual flows, and 
simultaneously for a set of flows. The latter allows Remos to take resource sharing across 
application flows into account. Support for simultaneous flow queries is particularly im- 
portant for parallel applications that use collective communication. 

Determining how the throughput of a flow is affected by other messages being sent 
at the same time is very complicated and network specific. A variety of different sharing 
algorithms that affect the proportion of bandwidth received by a particular flow are de- 
ployed. While some networks have sharing policies that are precisely defined for certain 
types of traffic (e.g. ABR flows over ATM, or flows with bandwidth guarantees over FDDI 
II or ATM), on other networks (e.g. Ethernet), full characterization of sharing behavior 
would require consideration of packet sizes, precise packet timings, queueing algorithms, 
and other factors. Moreover, how much bandwidth a flow gets depends on the behavior of 
the source, as senders can vary in their aggressiveness and how quickly they back off in the 
presence of congestion. 

Because of the complexities involved, the Remos implementation has not attempted to 
characterize these interactions accurately in general. Our approach is to return the best 
knowledge available to the implementation that can be returned in a network-independent 
manner. In general Remos will assume that, all else being equal, the bottleneck link band- 
width will be shared equally by all flows (not being bottlenecked elsewhere). If other better 
information is available, Remos can use different sharing policies when estimating flow 
bandwidths. The basic sharing policy assumed by Remos corresponds to the max-min fair 
share policy [59], which is the basis of ATM flow control for ABR traffic [4,60], and is 
also used in other environments [53]. 

My research has examined options for overcoming these restrictions in future revisions 
to the Remos implementation, or other network measurement systems. I have found that, 
although the problem is still imposing, useful information can be determined using rela- 
tively simple models. To date, these models have not been implemented in Remos itself, 
therefore discussion of these models will be postponed to Chapter 3. 

2.4.3 Example 

To see how simultaneous flow queries can be made using multiple flow types, consider the 
illustration in Figure 2.3. The middle diagram shows how the bandwidth of the fixed flow 
is first removed from the network. Next, the two variable flows share the bandwidth avail- 
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Figure 2.3: A flow query submitted to Remos, shown with the correspond- 
ing mapping of the flows to the physical network and the solution returned 
to the user. 
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able at their shared bottleneck. Finally, the independent flow is allocated the bandwidth 
remaining along its path. In this case, that turns out to be more than the variable flows. 

2.5    Topology queries 

Remos supports queries about the network structure and topology in addition to queries 
about specific flows in the network. The reason we expose a network level view of connec- 
tivity is that certain types of questions are more easily or more efficiently answered based 
on topology information. For example, finding the pair of nodes with the highest bandwidth 
connectivity would be expensive if only flow-based queries were allowed. 

Graphs are a well-accepted representation for network topology. Remos represents the 
network as a graph with each edge corresponding to a link between nodes; nodes can be 
either compute nodes or network nodes. Applications run only on compute nodes, and only 
compute nodes can send or receive messages. Network nodes are responsible only for for- 
warding messages along their path from source to destination. Each of the communication 
links is annotated with physical characteristics such as bandwidth and latency. 

Topology queries return the graph of compute and switch nodes in the network, as well 
as the logical interconnection topology. Use of a logical topology graph means that the 
graph presented to the user is intended only to represent how the network behaves as seen 
by the user—the graph does not necessarily show the network's true physical topology. The 
motivation for using a logical topology is information hiding; it gives Remos the option of 
hiding network features that do not affect the application. For example, if the routing rules 
imply that a physical link will not be used, or can be used only up to a fraction of its 
capacity, then that information is reflected in the graph. Similarly, if two sets of hosts are 
connected by a complex network (e.g. the Internet), Remos can represent this network by 
a single link with appropriate characteristics. 

In the absence of specific knowledge of sharing policies, we recommend that users 
of logical topology information assume that bandwidth is shared equally between flows. 
This assumption can be verified using queries. If other sharing policies become common, 
we could add a query type to Remos that would allow applications to identify the sharing 
policy for different physical links. 

Many networks, such as Ethernet, offer both full- and half-duplex links with which to 
build the topology. In current Ethernet networks, for instance, frequently the connection 
between bridge and CPU is half-duplex, while the links between switches are full-duplex. 
Furthermore, routing is not necessarily symmetric, so paths connecting two sets of ma- 
chines may follow a completely different set of switches in each direction. The result is 
that three types of links: full-duplex bidirectional, half-duplex bidirectional, and unidirec- 
tional are commonly used in networks. 

Because these characteristics make a dramatic difference in the performance of a net- 
work, Remos needs to support accurate representations of the duplex of each network link. 
Furthermore, because the graphs will typically be analyzed by other algorithms, the repre- 
sentation must be easy to process automatically. We rejected merely adding flags to each 
link to indicate whether it is full- or half-duplex, primarily because doing so would intro- 
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Figure 2.4: Representation of asymmetric routing, full-duplex, and half- 
duplex bidirectional links with unidirectional links. In (a) and (b), the links 
themselves are used to indicate the bandwidth characteristics in each direc- 
tion. In (c), because the same link capacity is shared in each direction, a 
virtual switch is inserted instead. The internal bandwidth and latency of the 
virtual switch is used to represent the capacity of the half-duplex physical 
link, while the four unidirectional links in the logical topology are set to a 
higher bandwidth and zero latency. 

duce challenging programming issues to select the correct capacity and utilization when 
the link may be traversed from both ends. 

The solution adopted by Remos is to use unidirectional links exclusively. Both full- 
duplex and half-duplex bidirectional links can be represented using combinations of these 
unidirectional links and virtual switches. Again, the logical topology given to the appli- 
cation may not represent what is physically present in the network, but the functionality 
remains the same. And, in this case, there is no way for the application to know what 
hardware is being used to build the network. Figure 2.4 depicts how unidirectional links 
are used to address the issues of asymmetric routing, full-duplex bidirectional links, and 
half-duplex bidirectional links. 

Although Remos uses several constructs to represent different types of physical links, 
adding them to topology drawings introduces a great deal of clutter, without conveying 
any additional useful information. In this dissertation, therefore, network drawings will 
continue to use single links between nodes, with the implicit assumption that each link is 
full-duplex bidirectional, unless otherwise mentioned. 

All information is represented in a network and system independent form. Hence, the 
network topology structure is completely independent of peculiarities of various types of 
networks and manages network heterogeneity in a natural way. Remos emphasizes infor- 
mation that can be collected on most networks, but it should be noted that not all types of 
information may be provided by all networks and Remos implementations. For example, 
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Figure 2.5: Remos graph representing the structure of a simple network. 
Nodes A and B are network nodes, and nodes 1-8 are compute nodes. 

if a network architecture provides specialized information like reliability or security of a 
link, Remos could be extended to include such information when available. 

2.5.1    Examples 

Figure 2.5 shows a simple network represented by a graph. The links in this network rep- 
resentation are annotated with network performance information. However, it is just as 
important that the nodes include performance information as well. For instance, if nodes A 
and B each have an internal bandwidth of 80Mbps and all the compute nodes have band- 
widths higher than 10Mbps, then the links connecting the compute nodes to the network 
nodes restrict bandwidth, and all nodes can send and receive messages at up to 10Mbps 
simultaneously. On the other hand, if nodes A and B have internal bandwidths of 10Mbps, 
then these two network nodes are the bottleneck and the aggregate bandwidth of nodes 1-4 
and 5-8 will be limited to 10Mbps. 

In the previous paragraph we (implicitly) assumed that Figure 2.5 represents a physical 
topology consisting of 8 workstations, 2 routers, and 9 links. However, Figure 2.5 can also 
be interpreted as a logical topology, potentially representing a broad set of (physical) net- 
works. For example, if A and B have internal bandwidths of 10Mbps, it also represents two 
10Mbps shared Ethernets, containing nodes l-A and 5-8 respectively, that are connected 
to each other with a 100Mbps link. While it may not correspond to the physical structure 
of the Ethernet wiring, it accurately represents its performance. 

The importance of the distinction between compute and network nodes is illustrated in 
Figure 2.6. In Figure 2.6(a), a high speed "research" network has been added to compute 
nodes \-A. Similar to the way most research networks are deployed, the nodes are dual 
homed ( i.e., they are simultaneously connected to both the research and the "regular" 
network). Because compute nodes cannot forward messages, node 1, for instance, cannot 
use the research network to reach any node other than nodes 2—4. If connectivity to other 
nodes is desired, one of the compute nodes can also serve as a router, as is logically shown 
in Figure 2.6(b). With this representation, node 1 can receive 10Mbps of data from node 5, 
and at the same time, send 10Mbps of data to node 6 through nodes C, D, A and B. 

The sample network of Figure 2.6 also brings up the complications of routing. With 
simple networks such as the one shown in Figure 2.5, only one path connects every pair of 
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Figure 2.6: Network from Figure 2.5 with additional network added to 
nodes 1^1. (a) no routing between the two networks; (b) Node 4 has been 
modified to also route messages between the networks. 

nodes. However, in Figure 2.6(b), there are two possible routes between nodes 1-3 and the 
rest of the network. Because of the complexity of the routing issues, Remos does not export 
the routing information to applications, but may use this information to answer flow-based 
queries. Many networks have an acyclic topology, as shown in Figure 2.5. If multiple paths 
are possible, then only one path is likely to be of interest at a time, and other paths will 
not even show up in the logical topology. For example, most applications would only use 
the research network, or the regular network, but not both at the same time, so the Remos 
interface would only return one of the two subnets, depending on the scenario. 

Capturing routing information in the model would add a lot of complexity, while rarely 
adding value, so we decided not to include it. Either a large set of parameters or an entire 
routing description language might be required. A simple table can handle static routes, but 
many networks where routing decisions are necessary make dynamic decisions based on 
network traffic, packet size, volume of data from a single host, host priorities, application 
priorities, or at the control of the application. Until a better description of how these issues 
can be handled in a portable manner is available, the topology interface simply avoids 
including this information. 

Remos may return a topology graph with multiple routes, when they are feasible, but 
no other routing information is returned. We expect that an application that makes use of 
such topology graphs is informed about how to properly interpret the information. Note 
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that the results of both flow-based and topology queries implicitly include a lot of routing 
information. 

Although the routing information is not available through the topology graphs, the 
query interface for simultaneous flow operations can provide accurate feedback on what 
happens, given a particular communication pattern. The Remos Modeler can query the 
Collectors for the route used by each separate flow, which allows the correct routing infor- 
mation to be used when the routing is statically determined. 

2.6 Limitations 

Our design of Remos ignores a number of important network properties. As we just men- 
tioned, it deals with the issue of alternate routes in a restricted way. Moreover, it does not 
deal with multicasting, or with networks that provide guaranteed services. While both 
of these are important features that would be of interest to applications using Remos, 
the networks deployed today rarely make this functionality available to applications. As 
application-level multicast and guaranteed services become more widely available, we will 
extend Remos to support them. 

2.7 Application programming interface 

The Remos API is divided into three classes of functions: status functions, fitting functions, 
and topology queries. We briefly outline the main functions in this section. 

All queries support a timeframe field to specify the timeframe of interest to the appli- 
cation. Applications can specify queries that return information on previous, current, or a 
prediction of future network conditions. Physical characteristics can also be requested. 

2.7.1    Status functions 

Status functions return information on individual compute nodes and simple node-node 
flows. An additional function in this category allows the user to supply information on the 
software overhead contributed by the communication software to the Remos interface, so 
that such information can be taken into account when computing the responses to queries: 

• remos_get_node() This provides information about a node's network characteristics. 

• remos _get_flow() This provides information about the characteristics along a path 
between two nodes. 

• remos_node_delay() This allows the user to contribute information about delays con- 
tributed by software layers unknown to Remos. 

• remos_get_node Jnfo() This call returns information about a node's compute power 
and load. 
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• remos_node_query() This call allows expandable queries to be made about a host. 
For example, currently a query can be made to obtain a list of shared libraries avail- 
able on a machine, to ensure that an application can execute on it. 

2.7.2 Fitting functions 

Fitting functions return information about the ability of a network to support several simul- 
taneous flows. They implement the concept of flow-based queries with sharing discussed 
in Section 2.4.2. Fitting functions allow an application to determine the service that will be 
received by a new set of flows, given the resource requirements of the existing flows and 
the sharing properties of the network (Section 2.2.2). The remosJlow _info() query allows 
the user to specify a set of end-to-end flows. The function then returns the bandwidth needs 
that can be met by the network. The remos _flowJnfo() query takes a set of parameters that 
can be used to describe a wide variety of scenarios. 

• fixedJtows are flows that have specific bandwidth requirements that cannot be al- 
tered. If one cannot be met, the call will return failure, with an indication of what 
can be met. An important purpose of this flow class is that it allows the application 
to specify flows that the other two classes must compete against. 

• variable_flows are used when an application is interested in determining how much 
bandwidth is available if it attempts to simultaneously send data in several flows. All 
flows in this class will be adjusted to rates that can be met by the network. The adjust- 
ment takes place in a approximately proportionate manner, based on the bandwidth 
requested for each flow and overall network constraints. A requested bandwidth is 
not reduced unless it is constrained by the network. 

• independent-flows are used to determine how much bandwidth is remaining for ad- 
ditional flows, after meeting the first two needs. Each flow specified in the set is 
considered independently. An important use of this query is for deciding among 
several options for a planned communication. 

This interface has the advantage that the user can obtain a proper answer for communi- 
cation on networks with topologies and behaviors that may not be accurately representable 
through the topology interface. 

A flag is provided to specify that a reservation should be placed for the resulting com- 
munication specification. The Remos interface does not support this reservation directly. 
However, when implemented on top of a network with QoS support, the reservation service 
would be a natural extension to Remos. A reservation request will be simply denied if such 
requests are not supported by the underlying network platform. 

2.7.3 Topology functions 

The third and final category is the topology query interface. This interface allows the 
user to obtain a network topology for a set of nodes selected by the user. As described 
in the design section, this topology is intended to represent the network's performance 
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characteristics as seen by the application. Due to the variety of techniques for handling 
routing on networks, routing is not represented explicitly on the network. In most cases, a 
simple prediction based on the shortest path algorithm is appropriate, while in other cases, 
outside knowledge of the routing algorithm may be required. 

2.8    Using the API 

The usefulness of an API is determined by the types of applications that can make use 
of it. Several applications are presented throughout this dissertation. Here I present brief 
overviews of several other examples, as well as an example of how the Remos API is used 
in pseudocode. 

2.8.1    Adaptive applications 

Some real-time applications, such as distributed video systems, require consistent quality 
of service to perform effectively. However, many applications with weaker real-time prop- 
erties can adapt to the available network performance, for example by varying their frame 
rate, image quality, and processing load [29]. 

One system that can make use of such information is Odyssey [86], which manages a 
variety of adaptive applications across networks ranging from high-performance to wireless 
systems. Odyssey combines protocol specific adaptations, such as frame rate and quality, 
with function and data shipping, to select the best combination of network and computa- 
tional resources to achieve the desired application quality metrics. Adaptation in Odyssey 
is based on a Viceroy, a controlling authority for the resources on each node. Each Viceroy 
interacts with Wardens that implement the adaptation mechanisms for specific distributed 
resource types. The Viceroy is currently responsible for collecting information on net- 
work status, but instead, it could use Remos to retrieve this information. In fact, a similar 
modification has already been made to support the status of wireless networks [39]. 

Video applications are interested in flows between a client node and a small set of server 
nodes. The Remos fitting function is the most appropriate in this case since it allows the 
application to ignore the rest of the network and focus only on the aspects of the network 
that affect the client's performance. The Viceroy can issue a flow-based query for each 
of the servers or server combinations, and select the servers that give the best throughput. 
It can periodically reissue the query, or it can ask for a callback when conditions in the 
network change considerably. 

Adaptation is also widely used in the area of high performance computing. The Fx 
compiler [109,110] has successfully used automatic analysis to assign nodes to meet the 
performance requirements of applications containing multiple tasks. However, this analysis 
assumes static network behavior, and a system like Remos is required for adaptation in a 
dynamic network environment. Two other examples of network-aware applications include 
a pipelined application that adapts the pipeline depth [102], and simple distributed matrix 
multiply that selects the optimal number of nodes [111]. In both cases, applications used 
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simple benchmarks to characterizing network performance. Remos provides a simpler and 
possibly more accurate alternative. 

2.8.2    Clustering 

A decision regarding what nodes to use for the execution of a parallel application can be 
made on the basis of availability, experience, performance, or efficient use of resources. 
Independent of the motivation, making these decisions requires some information on net- 
work and system performance. A typical problem is to locate the largest group of machines 
that have both a certain compute power and are capable of sustaining a certain bandwidth 
between themselves. 

The network topology interface is the most appropriate mechanism to collect infor- 
mation to solve this problem. The interface can be used to connect candidate nodes with 
information on bandwidth availability on links connecting them. One of several known 
algorithms can then be used to deduce what nodes are "closest" together and meet connec- 
tivity requirements. 

The code in this section demonstrates how the Remos API and data structures are used 
to build a cluster of tightly coupled machines using a greedy heuristic. This is not an 
optimal algorithm, but provides a good example of how the topology interface can be used 
to select nodes based on network performance. 

The cluster is chosen as a set of n processors that are close to a designated node. The 
criterion for closeness is the average time to send a message of a given size to other nodes 
in the cluster. The input is a list of nodes, a designated start node, the size of the desired 
cluster, and a message size. The return value is a cluster of selected nodes. At each step, 
the routine looks at the nodes not in the cluster and adds the one that has the lowest average 
communication time with nodes already in the cluster. The communication times between 
nodes in the cluster and those not in it are calculated using compute-distances. 

This pseudocode is written for intelligibility and is neither legal C nor Java. 

/* make_cluster = routine to use greedy algorithm to form a cluster 
* startHost: initial node to begin forming cluster around 
* clusterN: number of nodes to be in cluster 
* nodes: all candidates for the cluster (includes startHost) 
* length: size of message for determining cost 
* 

* returns: list of nodes in cluster 

*/ 
Remos_Node_List make_cluster 
(Remos_Node startHost, 

int clusterN, Remos_Node_List nodes, int length){ 
RemosGraph graph; 
double timeframe = 0; 
Hashtable costFromNode[clusterN]; 
NetworkCost zeroCost; 

Remos_Node_List clusterNodes; /*actual members*/ 
closterNodes = remos_new_list(clusterN); 
clusterNodes.add(startHost); 
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zeroCost = new NetworkCost(); 
zeroCost.latency = 0; 
zeroCost.bandwidth = INFINITY; 
zeroCost.messageTime = 0 ; 

/* get graph containing all nodes of interest */ 
remos_get_graph(nodes, &graph, ktimeframe, NULL); 

nodes.remove(startHost); 

/* calculate times to send a message from the starting node to 
all others */ 

costFromNode[0] = new Hashtable(); 
costFromNode[0].put(startHost, zeroCost); 
compute_distance(node, costFromNode[0], length); 
clusterSize=l ; 

while(clusterSize<clusterN){ 

Remos_Node newHost; 

/* The array costFromNode has entries of how long it takes to 
get the message to every node in the graph from every node 
already in the cluster.  Go through the array and find the 
node not in the cluster with the lower average time to send 
the message. */ 

newHost = pick_minimum_average_distance(costFromNode, nodes, 
clusterSize); 

/* add to cluster list */ 
clusterNodes.add(newHost); 

nodes.remove(newHost); 

/* calculate time from the new node to all other nodes */ 
costFromNode[clusterSize] = new Hashtable () ; 
costFromNode[clusterSize].put(newHost, zeroCost); 
compute_distances(newHost, costFromNode[clusterSize], length); 

clusterSize++ ; 

return clusterNodes; 

} 

compute_distances () is used above to find the latency and bandwidth between a 
designated node and each of the other nodes in the network. Latency is the sum of latencies 
along a path and bandwidth is the minimum of the bandwidths of the links on the path. 

/*  compute distances:   return distance  from one node  to all  others 
* node:   pointer  to  current  node   in  traversal 
* pathCosts:   Hashtable  mapping nodes   -> NetworkCost,   each entry 
* holds  the  cost  of  reaching  that  node   in  the  graph 
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* messageLength: length of message to calculate time for 
* 

* This is a recursive routine that traverses the network topology 
* calculating the latency and bandwidth to each node.  The algorithm 
* is started by calling it with the desired source node and a 
* hashtable with an entry specifying 0 latency and infinite bandwidth 
* for that source node.  This algorithm will then traverse the graph, 
* adding up the latency and finding the bottleneck bandwidth to each 
* node.  pathCosts is used as a flag to indicate whether a node has 
* been visited before.  This algorithm is depth first, so it probably 
* won't produce good results on a graph with cycles. 

*/ 

void compute_distances(Remos_Graph_Node node, Hashtable pathCosts, 
int messageLength){ 

NetworkCost toGetHere = pathCosts.get(node); 

for(remos_list_all_elements(node->neighbors, neighbor_i, i)){ 
NetworkCost costToNeighbor = pathCosts.get(neighbor_i); 
if(costToNeighbor == NULL){ 

costToNeighbor = new NetworkCost; 
costToNeighbor.latency = neighbor_i->node->1atency+toGetHere->latency; 
costToNeighbor.bandwidth = 
min3(neighbor_i->node->bandwidth, 

toGetHere->bandwidth, 
neighbor_i->link->bandwidth); 

costToNeighbor.messageTime = costToNeighbor.latency+ 
messageLength/costToNeighbor.bandwidth; 

pathCosts.put(neighbor_i, costToNeighbor); 

compute_distances(neighbor_i.node, pathCosts, messageLength); 

2.9    Implementation 

In designing the Remos API, we sought a design that is both portable, in terms of the 
applications it supports and the networks on which it will run, and implementable on current 
networking hardware. We believe that the API is generic and portable across a wide variety 
of network architectures, although the full information it seeks to provide may not always 
be available. We have also built an implementation of the API to demonstrate that it can be 
implemented on current networking hardware. 

The Remos implementation consists of both a user- and system-level component. The 
user-level component is called the Modeler and provides the API to applications in the 
form of a library. The system-level component is named the Collector. At runtime, the 
Modeler receives queries from the application. It does some initial preprocessing, then 
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passes the queries to the Collector. The Collector gathers the actual information from the 
network, then returns information about the network to the Modeler. The Modeler finishes 
processing the raw information into a response to the application's query, and returns the 
response to the user. The architecture is diagrammed in Figure 2.7. 

The Modeler is currently implemented in both C and Java. It is single-threaded and 
communicates with the Collector over a TCP socket, using a simple ASCII protocol. The 
modeler is responsible for inserting virtual switches to simplify the topologies returned by 
the Collector and for performing max-min flow calculations on the Collector's topologies 
to determine solutions to flow queries. 

If predictions are necessary, the Modeler uses Dinda's RPS package [35,37,38] to con- 
vert history information obtained through the Collector into a prediction of future perfor- 
mance. There are a number of issues associated with converting historical network in- 
formation into future predictions, and these details are covered in Dinda's papers and in 
Chapter 3. 

The Collector's architecture is more complex. Because Remos is designed to provide 
information about different parts of the network to a variety of applications requesting 
information, scalability was very important in the design. This prohibited having a sin- 
gle server act as Collector for the entire Internet. Instead, a two-layer scheme has been 
designed. The majority of the Collector design is described in a paper by Miller and 
Steenkiste [82]. I will summarize the design, as well as describe additional details that 
are being implemented and have not yet been published separately. 

The first layer of the Collector design is the Master-Collector. The Master-Collector 
is primarily responsible for aggregation of the information provided by the lower-level 
architecture-specific Collectors into a single response to return to the Modeler. The Master- 
Collector keeps a database of which lower-level Collectors are monitoring which portions 
of the network. When a query arrives from a Modeler, the Master-Collector then divides 
the query into components corresponding to each portion of the network, as well as for the 
paths connecting those network portions. The components of the query are then sent to their 
respective Collectors. When the responses are received, the Master-Collector combines the 
information together again and returns it to the Modeler. 

Each lower-level Collector is generally responsible either for one network or for the 
connection between networks monitored by other Collectors. There are three different 
types of collectors currently supported: SNMP Collectors, Bridge Collectors, and Bench- 
mark Collectors. 

The SNMP Collector is the basic Collector upon which Remos relies for most of its 
network information. SNMP is a database protocol designed for obtaining network-level 
information about topology and performance. Because it has direct access to the informa- 
tion the network itself stores, this Collector is capable of answering the flow and topology 
queries that require an understanding of the details of the network's structure. Details about 
how SNMP can be used to obtain topology and performance information is covered in later 
chapters. 

The Bridge Collector acts as an assistant to the SNMP Collector. Its purpose is to pro- 
vide topology information about a bridged Ethernet to the SNMP Collector when it receives 
queries for previously unknown nodes. The Bridge Collector queries all components of a 
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Figure 2.7: A detailed illustration of how the components of the Remos 
architecture are connected together. Shown here are applications running at 
CMU and ETH making use of resources at CMU, ETH, and BBN. CMU 
is at the top-left, ETH is at the top-right, and BBN is at the bottom. Each 
application is using prediction services to provide information about the 
future network availability. The applications at CMU are using machines at 
CMU and BBN, and the application at ETH is used machines at ETH and 
BBN. The benchmark measurements sent across the Internet are shown, but, 
for clarity, the connections between the SNMP and Bridge Collectors and 
the network components at each site are not shown. 

46 



2.10 Related work 47 

bridged Ethernet to determine its topology, then stores this information in a database. When 
a query is made to the SNMP Collector, the Bridge Collector provides it with the portion 
of the topology that is needed to fulfill the query. Without the Bridge Collector, the SNMP 
Collector is only able to handle level 3 routed IP networks. With the Bridge Collector, it 
can provide information about both the level 2 and level 3 components of the network. The 
algorithms implemented by the Bridge Collector are described in Chapter 4. 

While SNMP offers excellent information, it is generally not possible to obtain SNMP 
access to network information for WAN or other networks where you do not have an ac- 
count on a machine. Because information is still needed to determine network characteris- 
tics connecting the networks where the SNMP Collector is used, the Benchmark Collector 
was designed. A Benchmark Collector is run at each site where an SNMP Collector is. 
When a measurement of performance between multiple sites is needed, the Benchmark 
Collector exchanges data with the Benchmark Collector running at the other site of inter- 
est. By measuring the rate at which the data travels across the network, the Benchmark 
Collectors determine the performance of the links connecting the network and report this 
information to the Master-Collector. Details and analysis of this implementation, in par- 
ticular, is described by Miller and Steenkiste [82]. This technique is very similar to the 
techniques used by NWS for obtaining its measurements [119]. 

2.10   Related work 

A number of resource management systems have been developed that either allow applica- 
tions to make queries about the availability of resources, or to directly manage the execution 
of the applications. Systems in present use primarily deal with computation resources, such 
as the availability and load on the compute nodes of the network. An application may use 
this information to control its own execution or the system may place the application on 
nodes that have the minimum load. Examples of resource managers include research sys- 
tems like Condor [72] and commercial products like LSF (Load Sharing Facility). While 
such systems can be adequate for compute-intensive applications, they are not suitable for 
applications that handle movement of large data sets and applications based on internet- 
working, since they do not include a notion of communication resources. 

More recently, resource management systems have been designed for Internet-wide 
computing, some examples being Globus [47] and Legion [52]. These systems are large in 
scope and address a variety of mechanisms that are necessary to make large scale distributed 
computing possible. For example, Globus services include resource location and reserva- 
tion, a communication interface, a unified resource information service, an authentication 
interface, and remote process creation mechanisms. The Remulac project and Remos in- 
terface are less ambitious, but more focused. We are concentrating on good abstractions 
for a network to export its knowledge to an application, and for applications to use this 
knowledge to achieve their performance goals. Thus, our research addresses some of the 
core problems that are critical to the development of large scale resource management sys- 
tems, and we aim to develop a set of mechanisms and abstractions to allow the development 
of network-aware applications. Most network-aware applications require some policies to 
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chose the appropriate mechanism. While these are beyond the scope of this project, they 
are the subject of other research efforts including the Amaranth project at Carnegie Mel- 
lon [55]. 

A number of groups have looked at the benefits of explicit feedback to simplify and 
speed up adaptation [39,58]. However, the interfaces used in these efforts have been de- 
signed specifically for the scenarios being studied. 

NWS is a system commonly used for obtaining measurements and predictions of net- 
work and system performance [117]. Its interface is designed less to ensure portability 
and more to expose the actual measurement numbers collected directly to the application. 
Because of its relationship to much of my work, the other aspects of NWS are discussed in 
subsequent chapters. 

A number of program are collecting Internet traffic statistics, such as the NLANR pas- 
sive monitoring project [85]. This information is not a in form that is usable for applica- 
tions, and it is typically also at a coarser grain than applications would like to get. Another 
class of related research in the Internet is the collection and use of application specific 
performance data, e.g. a Web browser that collects information on what sites had good 
response times [98]. 

2.11    Summary 

Remos allows network-aware applications to obtain information about their execution envi- 
ronment. Remos provides a uniform interface so that portable network-aware applications 
can be developed independently of any particular network architecture. 

The challenges in defining the Remos interface are network heterogeneity, diversity in 
traffic requirements, variability of the information, and resource sharing in the network. 
The Remos API is the result of an effort to present the network at as high a level of abstrac- 
tion as possible, while maintaining the important low-level information needed by many 
applications. 

If an application needs only high-level information, it can use a flow-based query that 
provides information on the performance of application-level point-to-point flows. Because 
it has the low-level information about the network, Remos can account for the effects of 
sharing between different flows in the application. For applications that need lower-level 
information directly, the topology query primitive is provided. For the topology query, 
Remos returns a logical topology graph, which captures the information of interest to the 
application. 

There are two questions to be answered when evaluating the Remos API. The first 
question is whether it meets the needs of real applications. Remos has been designed to 
support the various applications described in this dissertation and has been used by a sev- 
eral research groups for a variety of applications. Although presented at a high level, the 
abstractions presented by the Remos API provide the low-level information many applica- 
tions need to properly optimize themselves to their network environment. 

The second question is whether the information needs of the API can be met on the 
networks used by people running these applications. The remaining chapters address how 
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low-level information about the network can be gathered and used to provide both low- 
level information, such as topology, as well as predictions of application-level end-to-end 
performance. 
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Chapter 3 

Network-based Measurement 

The development and performance of network-aware applications depend on the avail- 
ability of accurate predictions of network resource properties. Obtaining this information 
directly from the network is a scalable solution that provides the accurate performance 
predictions and topology information needed for planning and adapting application behav- 
ior across a variety of networks. The performance predictions obtained directly from the 
network are as accurate as application-level benchmarks, but the network-based technique 
provides the added advantages of scalability and topology discovery. 

The previous chapter discussed the need for a scalable means of providing predictions 
for distributed environments. The purpose of the network-based technique is to provide 
accurate predictions through a technique that is scalable enough to meet the challenges 
imposed by emerging distributed environments. That the network-based approach is scal- 
able is not difficult to demonstrate—after describing and evaluating the technique, I will 
discuss its scalability. The more important questions concern whether the technique pro- 
vides the same quality of predictions obtained through applying end-to-end benchmarking 
of the network. The majority of this chapter focuses on this evaluation. After verifying 
that the accuracy of the predictions is not sacrificed by using the network-based technique 
instead of end-to-end techniques, the scalability of the network-based technique and its 
implications for supporting grid-based computing will be discussed. 

This chapter describes how to determine network properties directly from the network 
devices. It begins with a description of the general features required to support network- 
based measurement. It then provides an overview of SNMP and describes the features 
SNMP provides that make it possible to extract available bandwidth information from net- 
work devices. The available bandwidth predictions based on network queries using SNMP 
are compared with traditional predictions based on application history to demonstrate that 
they are equally useful. These results validate the use of low-level information to predict 
the application-level performance that is required in the network-based approach to perfor- 
mance prediction. 
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3.1    Network requirements 

Before discussing how the prediction is done, it is necessary to consider what information is 
necessary for making useful measurements and predictions of network performance. This 
section first lists the requirements that a network must meet to support network-based mea- 
surement. Three popular network architectures: Ethernet, ATM, and Myrinet are analyzed 
in terms of these requirements. 

3.1.1    Requirements 

The requirements that the network components must meet are: 

Intelligence 

The first requirement is that the networking components, such as switches and routers, must 
support a protocol to communicate their status to other devices in the network. Commodity 
networking hardware uses SNMP, which is essentially a hierarchical database protocol, to 
serve this purpose. Devices supporting SNMP are frequently referred to as "intelligent." 
Except for extremely low-end bargain devices generally not found in commercial or aca- 
demic environments, all networking components support SNMP. 

The remainder of this chapter will simply assume that whatever information the net- 
work component provides is communicated using SNMP. SNMP was designed to allow 
network managers to remotely observe and adjust network components. It defines the 
structure of and operations on a database that is stored in each network component. The 
database is organized hierarchically, with portions reserved for various standards bodies 
and vendors. Components are free to implement only those portions of the hierarchy that 
are desired. Each portion of the hierarchy is specified by a document referred to as a Man- 
agement Information Base (MIB). Although it is more correct to refer to only the database 
protocol as SNMP, in common usage SNMP is used to describe the collection of MIBs 
as well as the protocol. I follow common usage unless distinctions are needed for clarity. 
For more information about SNMP and MIBs, many books have been written for use by 
network managers [104]. Further details of the specific parts of SNMP that are used for 
network prediction are described in Section 3.1.2. 

Characteristics 

The networking component must be able to report the bandwidth of itself and the links 
to which it is attached. Latency is also important, although it may be more influenced by 
congestion than by the natural physical characteristics of the link itself. For the majority 
of network architectures, this information is simply the physical capacity of the links. If 
reservations or other policies for dividing the physical link across multiple virtual links are 
used, however, determining what the "capacity" of a link is may become more complex. 
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Utilization 

The most important information that must be obtained from the device is the utilization 
of each link to which the device is attached. Currently, many network components do not 
directly report utilization. However, almost all components provide traffic counters that can 
be used to calculate a time-averaged utilization. Using counters, the frequency with which 
the counters are updated determines the intervals over which rates can be calculated. 

The ideal design to provide utilization information for network components would in- 
volve the network device itself calculating utilization information. If the network compo- 
nent were to update statistics in real-time, it could provide useful information about bursti- 
ness and variability in network traffic that is difficult to capture by periodically sampling an 
SNMP traffic counter. Incorporating more useful statistics about traffic is one of the goals 
of the Apmmon proposal [33], an IETF proposal for standardizing performance statistics 
to be calculated by network devices and made available through SNMP. 

Routing 

Finally, the routing information must be available from the network. "Routing" here refers 
to whatever protocol is being run across the network, regardless of whether the messages 
are using IP or another protocol. For instance, ATM, Myrinet, and Ethernet each have their 
own routing protocol. The requirement is that it must be possible to determine the hop-by- 
hop path that a connection will take. This information may not be given directly, such as 
with Ethernet, but it must be obtainable. 

3.1.2   Networking technologies 

Ethernet 

Ethernet, used for almost all LANs today, meets all of the requirements for providing 
network-based predictions. Being the most common LAN infrastructure, it is well sup- 
ported by the basic SNMP MIBs. As originally developed, Ethernet was primarily bus- 
based, with bridges used to separate networks. Modern Ethernet networks use switches, 
which are bridges with many ports, to partition the network into separate switched seg- 
ments. However, in most Ethernets the core of the network uses switches, while the end- 
points may be connected to a hub, which provides a bus-based network for several end- 
points. On bus-based portions of the network, each machine can observe all of the traffic 
on the network. However, on a switched network it is necessary to obtain utilization infor- 
mation from the switches themselves. 

Information about Ethernet networks is obtained from two MIBs. The first is the stan- 
dard MIB, which stores basic information for all network architectures. The second is 
the Bridge-MIB, which stores information used by Ethernet switches to forward packets 
around a switched Ethernet. 

RFC1213 describes the standard MIB, called MIB-II [77]. It is intended to describe 
essential information needed for all network components—including hosts, routers, and 
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bridges. It provides information about components' offered services and networking hard- 
ware. It also provides statistics and information about major networking protocols, includ- 
ing IP, TCP, UDP, and SNMP. 

Three parts of this MIB are of interest for network-based measurement. The first is the 
interface table. The entry for each interface provides the maximum data rate as well as 
octet counters, which indicate the number of bytes the interface has sent and received. This 
table provides the link characteristics and utilization information needed for network-based 
measurement. 

Another useful component of this MIB is the IP routing table, which indicates the ad- 
dress of the next hop used by the device to forward IP packets to their destination. This is 
the first item of importance in determining a network's topology. This table stores the IP 
routing only, which corresponds to the OSI model level 3 protocol. Once the address and 
interface used by the device to forward the packets has been determined, then the routing 
algorithm used by the level 2 architecture of that interface's network determines the next 
hop the packet will actually take to reach that next level 3 hop. 

The final useful component of MIB-II is the address translation table, which stores the 
mapping from machines' level 3 IP addresses to level 2 Ethernet addresses. This informa- 
tion is what is returned to the UNIX command arp, and is needed for queries made to the 
bridges to determine the Ethernet's topology. 

The second most important MIB is the BRIDGE-MIB [32]. This MIB provides infor- 
mation about the status of an Ethernet bridge, which is used to forward packets between 
different portions of a LAN. The interesting part of this MIB is the forwarding database, 
which stores the port used to reach each of the Ethernet addresses the bridge has seen. Be- 
cause bridges operate transparently, making queries from this MIB on each bridge is the 
only way to obtain the information needed to construct the topology of an Ethernet LAN. 

ATM 

ATM networks can be more complex than Ethernet, primarily because ATM's early devel- 
opment focused on supporting new networking technologies such as virtual circuits and 
reservations. Elementary ATM networks require access to the IP-OVER-ATM MIB [71] 
and MIB-II. Other MIBs are used to describe some of the more advanced standard features 
available on ATM networks. 

Myrinet 

Myrinet [15] has quickly grown to be one of the best commercial hardware and software 
solution technologies for the development of scalable clusters. Myrinet employs switches 
that forward source-routed packets between nodes. The first generation Myrinet switches 
were dumb switches, providing no information about their status or utilization. Current 
Myrinet switches, however, provide capacity and utilization information. No routing in- 
formation is provided through the switches. However, because Myrinet uses source-routed 
packets, routing information is already stored at all of the endpoints, and is determined 
automatically by a program distributed with the current generation of Myrinet software. 
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Figure 3.1: The stages involved in making a network-based prediction. 

3.2    Network-based prediction 

Figure 3.1 shows the process of making a network-based prediction.  Each step will be 
discussed in detail. 

3.2.1   Record a series of measurements 

The first step in making a prediction is recording a series of measurements from each com- 
ponent in the network. As discussed above, Remos records these measurements by sam- 
pling traffic counters periodically using SNMP. Because a rate is needed, two successive 
samples are taken to calculate a time-averaged utilization for that time interval. 

The sampling frequency used in this first step is the limiting factor for predictions made 
through this pipeline. More frequent samples will allow better understanding of the bursti- 
ness of the competing traffic on the network and allow for more accurate predictions to be 
made for the performance of fine-grained applications. Unfortunately, taking samples at 
higher frequency is more problematic, both due to the higher load imposed on the network 
and devices in taking the samples, and in terms of the inaccuracies in the counters and the 
sampling protocols being amplified as the sampling frequency is reduced. 

A more ideal solution would be having the network device itself gather statistics on the 
traffic on each link. By doing this, the device could sample the counter at a much higher 
rate and collect information about burstiness and other characteristics that are more difficult 
to obtain using SNMP-based sampling. The Apmmon MIB proposal [33] is one proposal 
for an addition to SNMP supporting some of these monitoring techniques. 
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Figure 3.2: A path where correlated utilization observations will need to be 
accounted for. 

3.2.2 Finding the bottleneck 

The network-based prediction process for an end-to-end connection begins with separate 
series giving the availability of each step of the path between the two ends. These series of 
observations are stored independently until the prediction is requested. 

To make a prediction, the first step is to calculate the bottleneck bandwidth between 
the two endpoints. End-to-end bandwidth is decided by whichever link has the minimum, 
or bottleneck, bandwidth along the path. For each time step in the series, the minimum 
bandwidth is selected from among the components along the path. A new series, reflecting 
the bottleneck bandwidth at each timestep, is then constructed for use in the rest of the 
prediction. 

Initially, this step may seem unnecessary—it might be easier to simply maintain predic- 
tions of each component individually and only calculate the bottleneck when an end-to-end 
prediction is needed. Unfortunately, this technique ignores correlations that must be taken 
into account to produce accurate predictions. Consider the network shown in Figure 3.2. 
Here, the end-to-end connection requiring prediction will experience congestion from a 
single competing source along three different links. The congestion on all three segments 
has the same source, therefore they will be congested at the same time. However, if the fu- 
ture congestion on each segment is predicted separately, this correlation might be lost, and 
the prediction may turn out to be significantly inaccurate. In particular, if the three mea- 
surements are not synchronized, it is unlikely that a time-series model would predict the 
same future congestion on each segment. However, if the bottleneck is calculated first, then 
any regularity in the congestion will be detected and the prediction will correctly reflect the 
correlation of the congestion along the three segments. 

3.2.3 Time-series prediction 

The next step is to use the series of observations to predict the future utilization along the 
path. Time-series prediction is a general technique for performing such a prediction. A 
mathematical model is fit to the series of previous observations. That model is then used to 
obtain a prediction of the future behavior of the network. These models require uniformly 
periodic utilization samples and provide similar periodic predictions of future behavior. 
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One of the most important aspects of time-series models is their ability to provide both a 
prediction of the future value of the series, in this case the network's utilization, as well as a 
measure of the confidence in that prediction. That measure of the confidence in a prediction 
can be just as useful as the prediction itself. In particular, on networks with extremely 
invariant traffic, it will indicate that the predicted utilization will be almost constant for 
the application's run. On other networks with extremely bursty traffic, the variance may be 
orders of magnitude larger than the utilization prediction itself. This can occur on networks 
that are typically idle but occasionally have bursts of capacity traffic. Overall, the variance 
prediction is useful for indicating how well the network-based predictions can be trusted. 

There are a large number of mathematical models for time-series prediction to choose 
between. Describing these and the significance of the different models is beyond the scope 
of this dissertation. For general information about time-series models, see the book by Box 
et al. [19]. Peter Dinda has completed an extensive survey of various options for time- 
series prediction and developed a software package that implements a number of these 
models that has been used for predictions in my research [34]. 

Rich Wolski compared the accuracy of a number of time-series models for making 
predictions of bandwidth for network benchmarks [116]. Wolski found that the sliding 
window and autoregressive models were both among the more accurate models available 
and inexpensive to fit to the series. For these reasons, these two models were chosen for 
the time-series prediction used in the following experiments. A more thorough technique 
would include evaluating which model best fits the current series and dynamically returning 
predictions using that model, but such techniques were not implemented in these experi- 
ments to simplify comparisons. RPS, the prediction package developed by Dinda, supports 
this technique [37]. 

3.2.4   Application mapping 

At this point, the time-series prediction provides a series of predictions of the utilization 
of the network for the immediate future. The obvious question is how to convert this 
information into the application's actual performance. The simplest answer is to assume 
that the bandwidth received by the application will equal the capacity minus the utilization. 
Knowing the capacity and having a prediction of the utilization, simple arithmetic produces 
a result. However, the behavior of real networks and applications is much more complex 
than this simple equation. 

Application behavior 

The design and implementation of the application itself has a significant impact on the 
performance it ultimately receives from the network. Several factors may be of importance: 

Granularity Is the algorithm fine-grained, with many small messages and responses, or 
coarse-grained, with fewer, but often larger, messages. A fine-grained application 
requires low-latency communication, with predictable bandwidth. A coarser-grained 
application may better tolerate variance in available bandwidth and deal better with 
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high-latency networks.  In particular, if the communication is planned so that the 
application can hide communication latency, it will behave better on many networks. 

Communication software What message passing software is used? Some message pass- 
ing implementations rely on multiple handshakes to ensure buffer capacity, others 
send data blindly, trusting on OS buffering and the application to handle the data. 
The efficiency with which the communication software makes use of the bandwidth 
available to it has a significant effect on the application's performance. 

Communication protocol Does the application use TCP or UDP? TCP will attempt to 
use the network fairly, backing off it there are packet loss problems. UDP will not, 
of itself, back off. Depending on the circumstances, either protocol may achieve a 
higher bandwidth on a particular network. UDP may perform better in many cases, 
due to its lack of management overhead and its tendency to cause other TCP-based 
connections to back off, thus allowing it more bandwidth. On the other hand, in 
a situation where UDP data is suffering heavy losses, TCP's congestion-avoidance 
strategy may result in better throughput. 

Competing traffic 

Characterizing traffic by its utilization of the network is useful, but does not provide a com- 
plete picture of how that traffic will interact with the new application. The basic calculation 
of available bandwidth shown above simply assumes that the competing traffic will not be 
affected by the new application. This is not always true. On a LAN, the competing traffic 
may consist of a small number of TCP connections. Those TCP connections will react to 
the application's new connection and may actually provide the new application with more 
bandwidth than shown by the available bandwidth calculation. On the other hand, if the 
competing traffic consists of unreactive UDP connections, there may be no reaction, or 
even less bandwidth if the newer application induces loss in the existing connections and 
causes them to increase their data rate to compensate. 

Similarly, the number of connections has an effect on the bandwidth an application 
may achieve. On a wide-area connection, there may be hundreds, if not thousands of 
simultaneous connections. One additional connection will have almost no effect on such 
connections, regardless of the protocols involved. 

Although characterization of competing traffic is much more difficult to obtain than 
simple utilization measurements, the behaviors of different types of competing traffic can 
have a substantial impact on the performance received by new applications. 

Network infrastructure 

The hardware and software used to implement the network can have a significant effect 
on the behavior of the network. Beyond the obvious effects of additional bandwidth, the 
sharing policies used by different switches can change the bandwidth available to an appli- 
cation. Network policies designed to implement fair queueing, such as hashing different 
connections to different buckets, or random early drop, designed to force TCP connections 
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to back off before causing loss, can improve the performance of a network segment and 
cause a network to behave dramatically different than a simple FCFS queueing policy. 

Choosing a model 

These factors leave several choices for a model for An(). The first approach is a general 
model. A general model would have to consider all of the characteristics of the applica- 
tion, competing traffic, and network hardware and software. Such a model is probably not 
feasible to develop and would certainly be too expensive for real-time prediction. 

A simpler approach is to rely on past history for future predictions. By recording the 
performance of applications on a network under various traffic conditions, this history 
could be used to build a predictive model. Repeatedly monitoring the same application 
provides a characterization of the application's behavior. Similarly, monitoring the same 
network over time should result in an effective predictor of the types of traffic seen on that 
network. Although simple in concept, this approach requires large amounts of information 
to utilize effectively. 

A third approach at developing the mapping would be to divide the applications and 
network traffic into categories, based on their characteristics. Rather than developing a 
single model to reflect all conditions, this allows less data to be used to make effective 
predictions. It requires the ability to classify applications and traffic according to their 
characteristics. 

For the following experiments the second approach, based on previous history, will be 
used for predictions. This decision is primarily a matter of practicality. There are few 
portable techniques for determining application behavior, competing traffic characteristics, 
or network implementation. Rather than focusing on the development of new techniques 
for obtaining this information, I chose to determine whether the basic concepts of network- 
based prediction are fundamentally sound. Once network-based techniques are validated, 
further work can be done on extending the monitoring capabilities of the network, such as 
exploring options to obtain the information needed for more complex approaches. 

Different implementations of the history-based prediction were used for the different 
experiments and are described individually below. 

3.3    Testbed verification 

While there are clear advantages to the network-based technique, making predictions about 
end-to-end operations using low-level information is inherently difficult [94]. I have veri- 
fied the network-based technique against an application-based technique. If the two tech- 
niques offer similar accuracy, the scaling and efficiency advantages of the network-based 
method make it the better choice for performance prediction. 

These experiments were performed on a dedicated testbed where the conditions could 
be controlled to represent a wide variety of congestion levels. Because of the breadth of 
conditions experienced on networks, it is important to test prediction techniques at all levels 
of congestion [91]. 
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Application Competing Traffic 

Figure 3.3: Topology of the testbed used for the prediction experiments. 
All links are 100Mb. The hosts are 300Mhz DEC Alphas and the routers 
are Cisco 7206 routers. 

The network configuration used in the experiments is shown in Figure 3.3. The "appli- 
cation" used was a simple 1MB data transfer from A to B using TCP. Every 15 seconds, 
SNMP was used to measure the available bandwidth on all segments of the path between 
A and B, followed immediately by the application's data transfer. To measure available 
bandwidth over different averaging periods, the SNMP traffic counts were obtained 5, 3, 
0.5, and 0 seconds prior to the TCP message. 

A 1MB data transfer would be a typical benchmark. However, for this experiment, it 
is considered an application because it is being used to predict its own, rather than other 
applications', performance. A real application would also involve computation, which is 
being ignored for the purposes of this experiment. 

Synthetic traffic was inserted onto the network between SI and Dl, and S2 and D2, re- 
sulting in two congested links competing for bandwidth with the application. This synthetic 
competing traffic was generated using fractional Gaussian noise (FGN), a method described 
by Paxson for representing realistic aggregate traffic encountered on networks [89]. The 
average rate of competing traffic on each link was chosen between 0Mbps and 100Mbps 
(link capacity) and changed an average of every 10 minutes. 

3.3.1    Experimental method 

A diagram of how the experimental data was processed is shown in Figure 3.4. 
The first step of the process is to collect the experimental observations. As mentioned 

above, during the running of the experiments, traffic counts were obtained 5, 3, 0.5, and 
0 seconds prior to sending the TCP message. The multiple datapoints were saved so that 
offline analysis could be done using different averaging windows for bandwidth measure- 
ments. For the results described in this section, only the half-second window was used. 
After the final traffic count was obtained, the TCP message was immediately sent. The pair 
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Figure 3.4: The process used for analyzing the data collected in the experi- 
ment. 

of half-second traffic counts combined with the TCP bandwidth form the set of raw data 
used by the analysis for each time step. 

The second step in the process is determining the bottleneck bandwidth along the path. 
Because there are only two links subject to congestion in this experiment, this step involves 
only selecting the minimum of the two traffic counts. 

After the bottleneck bandwidth is calculated, the AnQ mapping function can be built. 
An() is a piecewise linear interpolation initially built for each data set with the training 
observations made before actual experimental predictions are attempted. As the experiment 
proceeds, each subsequent observation is added to the mapping function- 

As discussed previously, the technique for building An() is one of the most interesting 
design choices that must be made to apply network-based prediction. In these experiments, 
An is reevaluated each time. In a real system, this might prove too costly for real-time 
use if predictions for a large number of links are required frequently. My belief is that the 
calibration would be done far less often in a real system, but with more data than used in 
these experiments. For instance, if the type of traffic (TCP/UDP, number of connections, 
type of connections) on a link is characterized, it should be possible to apply one of a few 
known models to the observations of network utilization to predict the performance of the 
new application. However, such a project requires substantial research beyond the scope 
of my dissertation. I hope that my simpler approach demonstrates the validity of the basic 
techniques and encourages further research on the best models for predicting application 
performance based on network utilization measurements. 
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The application prediction was performed on the series of times recorded for the 1MB 
data transfer. Different time-series models were evaluated for predicting future application 
performance. The relative error between each step-ahead prediction, At(N), and the next 
actual observation, A(J\f), was recorded. 

The network-based prediction was formed by applying the same time-series models 
used above to predict the step-ahead available bandwidth, Nt, using the series of bottle- 
neck observations obtained in the experiment. The step ahead prediction was mapped to a 
prediction of application performance by applying the mapping function described above, 
resulting in the final prediction of An(Nt). The relative error between each step ahead 
prediction and the next actual observation, A(J\f), was recorded. 

Due to the nature of network performance prediction, there is necessarily error in any 
prediction technique. The primary purpose of these experiments is the comparison of the 
relative error of the two techniques to determine if either technique is significantly more 
accurate than the other. 

Experimental results 

Over 65,000 observations were taken during the experiments. To determine the accuracy 
of the two prediction techniques, 30 sets of 1500 consecutive observations were chosen 
at random from the experiment. The first 1000 were used to fit the time series model. 
The prediction technique was then tested over the next 500 observations. The model was 
refit for each additional observation, so the time series model was only used to predict one 
observation interval ahead. Each prediction was compared with the next actual observation. 

The implementation of the time series predictors that were used is described by Dinda 
and O'Hallaron [36]. The autoregression (AR) and sliding window average (SW) predic- 
tion models were used. Wolski examined several prediction models and found these two to 
be useful for network performance prediction [116]. 

A comparison between the relative errors is shown in Figure 3.5. The important ob- 
servation is that there is little difference between the application- and network-based tech- 
niques. This leads us to conclude that the network-based prediction technique can be used 
to provide network predictions with accuracy comparable to application-based techniques. 

It's interesting to note that in Figure 3.5 the results do not show that either the network- 
based or application-based technique are significantly better. The two best curves use both 
different measurement (network- and application-based) and prediction (AR32 and SW8) 
models. This combination of techniques indicates that the results do not show that one 
technique is significantly better than the other, just that there are many factors that affect 
the accuracy of a prediction. The observation that neither network- nor application-based 
is consistently better or worse is the most important, because it indicates that the network- 
based approach, although not as direct as running the application, provides equally useful 
information. Given the other advantages of the network-based approach in terms of scala- 
bility, invasiveness, and topology detection, it appears to be the clear preference from this 
experiment. 

61 



3.3 Testbed verification 62 

Testbed Experiment 

e o 
4-» 
d 
> 
<u 
c« 

O 
«4-1 o 
c o 

H     0.2 

0.4 0.6 

Relative Error 

Figure 3.5: Cumulative relative error distributions for application- and 
network-based prediction. Both 32nd-order autoregressive (AR32) and 8 
observation sliding window mean (SW8) predictions are shown. The SNMP 
available rate was averaged over 3 seconds for each observation. 

Predictability of traffic 

The analysis of these two prediction techniques relies only upon comparison of their accu- 
racy with one another, rather than comparing them with perfect accuracy or an idealistic 
model. Other research has demonstrated that real network traffic varies widely in its pre- 
dictability [7,95,116]. The most predictable traffic is generally aggregated traffic streams 
on Internet backbone links, as the aggregation forces the averaging of the dynamic be- 
havior of many flows. On the other hand, LAN traffic, with sudden starts and stops of 
high-bandwidth applications, can be rather unpredictable due to the small number of start- 
stop applications that may be able to saturate the network links on the machines they are 
running. One approach used to deal with predicting future behavior is to make predictions 
as a range rather than as a specific value [34,97]. 

Rather than focusing on a single type of traffic, the competing workloads in these ex- 
periments were chosen to create a wide range of competing traffic—from highly variable 
to rather stable congestion. In my analysis of the results, I observed no significant dif- 
ference between the techniques under any of the traffic scenarios, therefore the results are 
combined into a small number of graphs. 
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3.4    Simulated verification 

Because it is not possible to reproduce all ranges of network behavior on the testbed, sim- 
ulation was used to explore a wider range of parameters. The NS simulator was combined 
with packet traces from a university network gateway to produce a simulation of traffic 
types not possible on the testbed. 

3.4.1 NS simulator 

The NS simulator is one of the most widely used network simulators available today [5]. 
This experiment used a limited subset of the NS simulator's capabilities. The simulation 
used a traffic trace to represent congestion on the network and a Reno TCP connection to 
represent the application's traffic. 

3.4.2 Packet traces 

The traces used were obtained from the Passive Measurement and Analysis project of the 
Network Analysis Infrastructure being developed by the National Laboratory for Applied 
Network Research [85]. This project has captured the headers of actual network traffic 
from sites across the Internet. The traces used in this experiment were captured at the San 
Diego Supercomputing Center's Internet commodity and VBNS connections.. The traces 
were collected during the weeks of July 19, 1999 and August 9, 1999. 

The goal of this project was to collect traces of the network traffic without disturbing 
the traffic in any way. This was achieved using hardware to monitor the actual uplink con- 
nection used by major sites to connect to the Internet or VBNS. Dedicated PCs were used 
to monitor the traffic. Using an installed optical splitter and ATM interface, the machines 
were able to record the traffic on the link while remaining invisible to both ends of the con- 
nection. Collecting the data consisted merely of writing the network data to a high-speed 
disk. The final data could then be extracted from the actual traffic offline. The header 
collection hardware produces perfectly accurate traces, but buffer limitations restrict the 
length of each trace to 90 seconds. 

For the simulation, the background traffic was generated as UDP packets replaying 
this tracefile. Because the traffic is replayed with UDP, it does not adapt to the network's 
congestion. This is a different behavior than would be seen in the original network environ- 
ment. A more realistic combination of many TCP connections may be more appropriate, 
and possible to represent in the simulation. However, the modeling of user behavior, appli- 
cation response time, and network design affecting the behavior of the TCP flows are sig- 
nificant challenges and introduce their own additional modeling challenges. I have chosen 
to use realistic traffic traces in a somewhat unrealistic manner. Further study with addi- 
tional traffic models is needed. As discussed above, the results obtained with these traffic 
models are promising and justify further research into the accuracy of these predictions. 

Despite the limitations of this technique, it does represent several realistic behavioral 
characteristics of network traffic. In particular, when congestion is caused by the aggre- 
gated traffic of a large number of unrelated flows, a single connection will rarely have a 
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Competing Traffic 
Application 

Congested link 

Figure 3.6: Simulated network topology. The marked link is the only bot- 
tleneck, resulting in congestion at the router that connects the three hosts. 

significant impact on the competing flows. Because the traffic traces do represent a large 
number of flows (the entire campus of UCSD and SDSC during peak traffic times), the 
non-adaptive behavior is not as unrealistic as it might at first appear. Its invariance as 
the network topology is changed is somewhat less realistic, because the traffic generators 
would likely change behavior, but it is difficult to realistically predict user behavior in the 
face of additional congestion, and the congestion levels generated do appear in the modern 
Internet [91]. 

3.4.3   Simulated network 

The network topology used for this simulation is shown in Figure 3.6. This structure was 
chosen so that the behavior of TCP under switch congestion could be studied. There are 
no bottlenecks at either the TCP or trace generating nodes or their connecting links. The 
two traffic streams feeding into the single congested link result in congestion at the bridge, 
which implements simple tail-drop queueing. Each trace was simulated with the bandwidth 
of the congested link set to 20, 30, and 40Mbps to provide different levels of congestion. 

An advantage to running this experiment as a simulation is that the behavior of the TCP 
implementation could be changed slightly. When running a real experiment, it is necessary 
to consider the state of the TCP engine. In particular, shutting down an experiment early is 
difficult because both endpoints must agree that the connection is being closed. Until the 
link can be confirmed closed, the kernel maintains state for connections. Timing out this 
state may take several minutes. For the simulation, however, this complexity was unneeded. 
Instead, the TCP connection was simply left open for half a second. Rather than relying 
on the TCP connection to terminate normally, the simulation recorded the amount of data 
successfully acknowledged and reset both endpoints. This technique both removed the dif- 
ficulty of dealing with improperly terminated connections and allowed shorter observations 
to be used for data gathering. It could be argued that one source of errors in the testbed 
experiment was that the length of time taken by the TCP connection varied tremendously 
based on the congestion it experienced during the transfer. By recording the amount of data 
transfered over a specific time period, this uncertainty was removed. A similar change is 
not easily accomplished with an actual operating system. 
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Because of the short length of the traces, each observation consisted of 1/2 second 
to take the "SNMP" measurement and 1/2 second for the TCP connection, followed by 
a 1/2 second pause before the next observation began. The simulated switches do not 
support SNMP, but they do log their traffic counts at the required points, providing the 
same information that would be obtained from real equipment using SNMP. Over 10000 
observations were taken using the short data sets. For each tracefile, the time series models 
were trained for the first 8 to 16 observations, and the prediction quality measured on the 
remainder. 

At(J\f) was built using the series of times recorded for the 1/2 second TCP transfers. 
The SNMP-based predictions were done by applying the time series models to the series 

of trace-based "SNMP" available bandwidth measurements. For each data set, An() was 
created using the other data sets. 

3.4.4   Results for heavily congested networks 

The simulator allowed the analysis of performance prediction under much heavier traffic 
loads than the testbed experiment. As a link grows more congested, the available bandwidth 
reported by SNMP approaches zero. The available bandwidth, however, does not indicate 
the offered load, which is the amount of data applications are attempting to send through 
the link. For the same low available bandwidth measurement, the offered load producing 
that low reading may range from almost the link's bandwidth to orders of magnitude higher. 

If the link is only lightly congested, a path for which SNMP reports little available 
bandwidth may actually provide an application with a higher rate than the amount available. 
This behavior can occur if the competing traffic's rate is reduced in response to the new 
application's traffic. 

If the offered load is significantly higher than the link's bandwidth, it will be hard to get 
any data through. The router preceding the congested link will be dropping many packets 
already, and the competing traffic will be just as quick as the new application to use any 
bandwidth that becomes available. 

It is interesting to note that the type of congestion seen in LAN and WAN scenarios 
tends to be different. When congestion is observed in the LAN environment, it is typically 
due to a small number of high bandwidth flows. In a WAN environment, congestion is 
more typically caused by an extremely large number of low bandwidth flows. In the LAN 
environment, a new application flow will cause the other flows to back off and they will 
generally share the total link bandwidth evenly. In a WAN, a new application flow will 
have little effect on the existing flows. Generally, each additional application flow will 
receive approximately the same bandwidth in a WAN. This difference is important, but 
more information than utilization is needed to predict the differing behaviors. Currently, 
there is no standard way to determine the number of competing flows on a link. 

There is a difference between the way in which the synthetic traffic used in this exper- 
iment reacts to this environment and how real-world traffic behaves. Because the traffic 
in this experiment is non-reactive, it does not adapt to the packets being dropped due to 
congestion. While this behavior is unrealistic, many parts of the Internet do experience se- 
vere congestion. As many TCP flows attempt to share the same bottleneck, their continual 
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Figure 3.7: Relative error distribution with 90% confidence intervals for 
the simulation experiment including observations during extremely heavy 
congestion. For each technique, the relative error is calculated for the step 
ahead prediction versus the next actual observation. The results from all the 
traces were distributed among 30 data sets. 

attempts to increase their bandwidth will result in packets being dropped at the congested 
point of the network. Therefore, because heavily congested links with dropped packets 
do occur in real networks, it is important to analyze the predictability of such networks. 
However, because the synthetic traffic is not adapting to the network, it may be causing 
dropped packets in very different ways than actual adaptive traffic might. In particular, 
in real networks the rate of dropped packets is related to the actual bottleneck bandwidth. 
In this simulation, there is no such relationship. In summary, the predictability of network 
traffic in congested networks is important. While some of the results of this simulation may 
provide useful information about the behavior of network-based prediction on congested 
networks, complete analysis and validation of the technique will require more complex 
scenarios realistically emulating network behavior under congestion. 

The behavior of the application on a heavily congested network should be represented 
in An() and is dependent on the type of network and competing traffic involved. For a con- 
gested network, information beyond that available through octet counters may be obtained 
through the count of dropped packets, which is also available through SNMP. 

My initial analysis of the data revealed an interesting effect of the heavy congestion 
generated by some traces. The data shown in Figure 3.7 was surprising because there 
is a significant difference between the two prediction techniques and because the accu- 
racy of both techniques is less than seen in most other experiments. Analyzing the data 
revealed that the majority of the errors occurred when the network was under extremely 
heavy congestion and that the network-based technique was more prone to these errors than 
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the application-based technique. This discrepancy is due to the network-based technique's 
inability to measure the offered load on a congested link, whereas the application-based 
technique provides a history indicating whether the link is only marginally congested or 
seriously overloaded. Because these errors only appeared under extreme congestion and 
because such scenarios are of little interest to most distributed computing applications, ob- 
servations where less than 1% of the link's bandwidth was available were removed from the 
data used in Figure 3.8. The inclusion of dropped packet information would likely address 
these shortcomings, but because my research has focused more on locating and avoiding 
networks under such heavy congestion than on precisely predicting their behavior, this 
functionality has not been added to the prediction software. 

3.4.5    Results for moderate congestion 

Figure 3.8 shows the aggregate results from all of the simulations. The simulation results 
also confirm that the accuracies of the application- and network-based techniques are very 
similar. It is interesting to note that in the simulation results, the results group according to 
the time series model chosen, whereas in the testbed results in Figure 3.5, the best results 
from each technique were with different time series models. This merely serves to illustrate 
that it is very important to select the most appropriate model. Prediction systems such as 
RPS [36] compute several time series models and report results from the one with the 
lowest error. Therefore, it is probably most appropriate to consider only the top curves 
from each technique. 

3.5    Statistical metrics 

The similarity in the results from the network-based and application-based techniques is 
very promising, because it indicates that a more efficient technique offers the same ac- 
curacy as the established technique for measuring network performance. The confidence 
intervals in Figures 3.5 and 3.8 indicate that both techniques have similar variability, but 
the differences between the testbed and simulation results require some explanation. 

The results from the testbed experiment were divided into separate independent data 
sets. Because the background traffic was changing continuously, each data set was taken 
under different network conditions. This accounts for much of the variability in Fig- 
ure 3.5—it is much easier to make accurate predictions on a lightly congested network 
versus a heavily congested network. For the simulation results, however, the individual 
tracefiles obtained were too short to produce enough data for a CDF. Instead, the distri- 
butions were created by randomly dividing the data amongst 30 sets. This randomization 
homogenized the data and removed much of the variability from the final result. 

The CDF plots of the results tend to obscure the results for both low and high relative 
errors, in the first case because the distribution rises quickly and in the second because 
the distribution is long-tailed. To compare the two techniques over the entire distribution, 
Figure 3.9 presents a quantile-quantile plot for the simulation experiment. For two identical 
distributions, the quantile-quantile plot will produce the line y = x. In this graph, the two 
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Figure 3.8: Cumulative relative error distributions with 90% confidence 
intervals for application- and network-based prediction in the simulation 
experiment. Both 16th-order autoregressive (AR 16) and 8 observation slid- 
ing window mean (SW8) predictions are shown. The small error bars are 
discussed in Section 3.5. 

distributions are almost perfectly linear, indicating that the distributions are nearly identical. 

3.6    Scalability 
The scalability of an algorithm can be defined in many different ways. For parallel com- 
puting, scalability generally refers to an algorithm's ability to achieve more or faster work 
through the addition of more processors. To a certain extent, any of the measurement tech- 
niques discussed in this dissertation are scalable—they can be run on very large numbers 
of machines. However, the amount of information that can be provided about larger net- 
works and the applications that can be supported by that information varies depending on 
the characteristics of the measurement technique employed. 

The scalability of a measurement and prediction technique is defined in terms of the 
number of machines that it can support. Scalability is, therefore, dependent on the support 
requirements of the applications that desire to make use of those machines. As such, it is 
impossible to broadly quantify the general usefulness of any of the available measurement 
techniques without first defining the environment in which they are being used. I will begin 
by discussing the considerations for scalability of the measurement techniques. 
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Figure 3.9: Quantile-quantile plot of the CDFs for each prediction tech- 
nique. This is a plot of the logarithms of the values so that the similarity 
of the two techniques in both the low and high relative error regions can be 
seen. The y = x line is shown for reference. 

3.6.1    Scalability requirements 

The two factors that determine scalability are completeness and frequency. For an individ- 
ual application, completeness is only important insofar as the machines being used, and 
the connections between them, are being monitored and predicted accurately. However, 
rarely is the environment that needs to be monitored this simple. First, consider a single 
application that begins by selecting the set of processors it wants to use. The application 
needs information about all possible machines it might use and the connections between 
them. This may be a significantly larger number of machines then will actually be used. 

An additional complication is brought about by the desire to provide monitoring for 
environments where many applications may be running. In fact, to achieve environments 
such as a computational grid, we must be able to provide information for any application 
seeking sources of computational or other resources. The very nature of this environment 
requires monitoring the network's performance between all of the machines that might be 
chosen for execution by any application. This challenge, in particular, is only met by a 
monitoring solution that is capable of spanning the entire network of interest. 

The second component of the scalability analysis is the frequency at which the mea- 
surements are taken. The frequency of measurements is important because it determines 
the granularity at which predictions can be made. On a gross scale, the difference can be 
between one observation per day and one per second. Obviously, the second observation 
frequency is more useful than the first. But this comparison brings up the important ques- 
tion, which is determining what the best observation frequency is. Any of the techniques 
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under discussion can monitor a network of any size, given a low enough observation fre- 
quency. Therefore, the scalability question is only defined when posed in the context of a 
minimum frequency requirement to support the classes of application intended for execu- 
tion in that particular environment. 

To evaluate the extent to which completeness and frequency need to be supported by a 
measurement technique, consider the requirements of three common steps of applications 
running on distributed systems. 

Processor selection 

First, consider the general processor selection process. Most distributed applications begin 
by selecting the processors to use during execution. For some applications, there may 
be some restrictions, such as the location of a particular resource such as an instrument 
or data storage, or a processor with a particular capability. Even those applications may 
have considerable flexibility in the placement of much of their computational work. The 
spectrum ranges up to applications that have no restraints on where they are placed. For the 
purposes of this example, I will consider only initial task placement at the start of execution, 
deferring the question of dynamic placement for later. 

To make a processor selection decision, both the computational power of each ma- 
chine and the communication capacity between the nodes needs to be taken into account. 
For this dissertation, I ignore the computational needs of the applications and focus only on 
their communication requirements. Applications have a variety of different communication 
styles, each of which dictates different specific requirements, but a few broad observations 
can be made about most applications. I will assume that an application has enough com- 
munication requirements to affect its performance, as embarrassingly parallel programs are 
of little interest here. The broadest question that an application can ask is what the network 
performance it will get over its runtime will be. That itself is an interesting question. At 
first glance, an answer of "6Mbps" might seem appropriate. However, if that number is 
only an average, it may not be particularly informative. If the 6Mbps result is achieved on 
a network that oscillates between 1 and 11 Mbps available, the network will not be nearly as 
usable. In particular, many applications are synchronized in some way—if a single message 
between two processors is held up, it will delay the entire application. Even if 99 of 100 
links the application is using are free, one bottleneck will slow the entire application down. 
Similarly, many applications alternate between computation and communication, commu- 
nicating for a small amount of their execution time. These applications are impacted much 
less by the average bandwidth available during their execution than by the bandwidth they 
are able to utilize during the precise portion of execution during which they are trying to 
communicate. These cycles can be very short and are affected by variability in available 
bandwidth over hundredths of a second. Not all applications are affected by such temporary 
fluctuations. A bag of tasks application, with little synchronization, might not be particu- 
larly affected by fluctuations, as it would only impact the time a single processor spends 
acquiring its next task or returning results from its previous task. These examples illustrate 
the importance of matching the frequency of observation with the needs of the application. 
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While my analysis of processor selection is extremely general in nature, I have de- 
picted why the problem is more challenging than simply picking a set of machines with 
a high average available bandwidth. In order to effectively predict its performance on a 
network, an application must have information about all portions of the network that it 
considers for use. Therefore, we conclude that completeness is very important for pro- 
cessor selection. Furthermore, the frequency of observations necessary for prediction will 
vary between applications, but there are large classes of applications which require rather 
frequent measurements. 

Load balancing 

Next, consider the process of load balancing a running application. Load balancing can 
have multiple meanings, from shifting a running application between processors to redis- 
tributing data among the already utilized set of processors. The first definition is essentially 
the processor selection problem again, the important differences being that the cost of mov- 
ing the data must be taken into account, and the load the the application itself is imposing 
on the network must be taken into account in determining how much bandwidth will be 
available for the application after redistributing its load. I will be discussing the later def- 
inition, where the application is already running on a set of processors and a performance 
improvement is desired by redistributing the data amongst these processors. 

Load balancing is generally performed when running a synchronized data-parallel ap- 
plication. Although it is most commonly done because of uneven computational power 
between the nodes, other factors can be involved in the decision. Some applications have 
an irregular workload, meaning that although the data may be evenly distributed, the work 
might not be. If an application is on a heterogeneous network, it may be that a particular 
node does not have as high a bandwidth to its communication partners as other nodes used 
by the application have with their partners. This node should have less data because its 
communication phase takes longer to complete. Whatever the motivation, the decision is 
made by determining the current rate at which the application is running, a (higher) rate 
that can be obtained by redistributing the data, and the cost of moving the data. 

The cost of moving the data is another short-term cost, requiring only brief predictions. 
The rate at which the application will run is again dependent on the type of application and 
the length of its communication phase. This computation is dependent on the same factors 
as predicting the speed of the application for the original processor selection. Again, if the 
application is synchronized, its speed may depend on the variance of network performance 
on the time-scale of the communication phase. 

Dynamic scheduling 

I will conclude by discussing a dynamically scheduled application. The Dv project at CMU 
has focused on developing a distributed visualization toolkit for supporting the visualiza- 
tion of large datasets over a distributed environment. The principal motivation for this 
project was the Quake project. The Quake project developed extremely large earthquake 
simulations, which in turn produce very large datasets. These datasets are large enough that 
it is not feasible to transfer them over a network, nor is running X-based visualization an 
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effective solution for transmitting high-resolution interactive video. To address these diffi- 
culties, the Dv project has developed a system for dynamically scheduling the visualization 
of such datasets across the network, with the goal of providing a high-resolution interactive 
visualization at the user's desktop, in environments ranging in both network bandwidth and 
computational power. 

The heart of the Dv system is the active frames used to deliver the images to the user's 
desktop. Each active frame is given the data needed to produce the frame and a deadline 
when it should be displayed on the user's desktop. The frame must then be dynamically 
scheduled to obtain the computational work and network bandwidth it needs to be pro- 
cessed and delivered before its deadline. Scheduling the Dv frames is a fascinating chal- 
lenge, because there are several different components of the frame pipeline, each requiring 
different amounts of work and producing different volumes of data. Depending on the net- 
work and computational environment, it may be beneficial to perform most of the work at 
the computer center where the Quake dataset is stored, or to transfer the dataset to the user's 
network environment for processing. The array of options for execution and the different 
environments that Dv targets leads to a large number of possibilities for execution. How- 
ever, the key component is the scheduling of the individual frames. Because each frame 
is short-lived, the scheduling decisions are made off of a very short timeframe—a typical 
frame may have 5 seconds of time before it must be displayed. If it needs initial processing 
at the remote site, transmission to the remote site, and additional processing before ren- 
dering, this indicates a need for forecasts of both computational and networking resources 
at the second (or finer) granularity. Peter Dinda has addressed the problem of predicting 
computational capabilities in this environment [34], I use this as an example of the need for 
high frequencies of measurement in the networking environment. 

Lessons from the applications 

While I have discussed only one specific application, I have discussed application schedul- 
ing procedures which are used by a large number of applications. Two conclusions can be 
made by considering these application requirements. 

Individual applications may require only a small number of machines to be monitored. 
However, if a number of different applications are run in the environment, and in particular 
if distributed applications that may use many machines across the environment are used, 
then the monitoring system must be capable of monitoring all the machines in the network. 

The frequency at which the network must be monitored is, again, dependent on the types 
of applications that may be using the network. Many applications, however, do require 
a measure of the variance in network performance on a fairly fine level. Although this 
frequency may be even finer, I will state that a one-second granularity should be sufficient 
to meet the needs of most applications. The monitoring and prediction of network traffic at 
a finer level should prove to be a challenging research project. 

Based on the examples discussed above, the scalability requirement for a measurement 
system is that the system must be able to provide measurements of all paths in the network 
on a second granularity. 
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All links 100Mb Ethernet 

Figure 3.10: A simple way to connect 16 machines with 100Mb Ethernet. 

3.6.2   Benchmark scalability 

I will analyze the scalability of network-based and benchmark-based network measurement 
through analysis of how they perform on the network shown in Figure 3.10. This network 
is not the ideal way to connect 16 machines together using 100Mb Ethernet, which would 
generally be done using a single switch. However, it is common for larger networks to have 
subsets that can be represented by such a network. Furthermore, not every network is ide- 
ally designed, and real-world network measurement tools must be be capable of providing 
information about such networks. 

Benchmark-based measurement 

There are three factors that determine how benchmarking will be done on a network. 

• Pattern: The pattern used is the first decision. The simplest pattern is where each end- 
point performs a benchmark with every other endpoint, resulting in the predictable 
0(N2) number of connections. 

The most common means of reducing this cost is to perform the benchmarks in a 
hierarchical fashion, performing 0(N2) benchmarks within a department, then be- 
tween departments on a campus, then between campuses. This approach is of little 
use in a network such as Figure 3.10, even though it does have a hierarchical ar- 
rangement. Furthermore, not all hierarchical networks can be measured accurately 
in this manner. For instance, if the middle link had a capacity of 155Mbps, no single 
benchmark would be able to gauge its availability. 

One extreme example of reducing the number of benchmarks needed to measure ev- 
ery component in a network is to perform benchmarks between carefully selected 
pairs of machines, then algebraically determine the congestion on each link based 
on the connections that use the link. The first fundamental question is whether the 
topology is even known, so that the variables (bandwidth on links) can be deter- 
mined. Using a pure benchmark-based approach, this is generally not possible. Fi- 
nally, there is the question of performing independent benchmarks. Every path in 
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this network involves at least two links. Algebraically, the minimum number of mea- 
surements that must be done in this network is 17. However, there is a problem with 
this approach—it is impossible to take simultaneous measurements. This prevents 
the use of algebra to determine the available bandwidth on links, because there is 
no guarantee that successive measurements across a link saw the same traffic con- 
ditions. Furthermore, because only bottleneck links significantly effect bandwidth, 
these measurements would not necessarily reveal information about links less con- 
gested than the bottlenecks. 

As a result of the complexities associated with other schemes, measurement within 
a LAN is typically done using the 0(N2) algorithm, with various synchronization 
techniques employed to prevent simultaneous measurements congesting a single link. 

• Data length: Choosing the amount of data sent as a benchmark is equally important. 
Too little data can cause inaccurate readings. In particular, TCP slowstart prevents 
TCP from achieving its full rate during the beginning of a data exchange. While this 
is not a significant problem on slower connections, particularly on WAN connections, 
it can be a problem on LANs, where links typically have high available bandwidth. 
Alternative techniques, such as packet trains, require very little data to take an ac- 
curate measurement, but sample only an extremely brief moment in time, requiring 
more measurements to establish a better gauge of variability. 

Increasing the amount of data used for the measurement may produce a more ac- 
curate measurement on high-bandwidth network. Too much data may be harmful, 
however, as a long-lived connection for measurement may average too much time to 
be useful—in fact, variable time length measurements are an issue of some concern 
to the statistical techniques used for the measurements. Fixed time-length measure- 
ments of variable data length are more useful, but harder to implement. 

• Load factor: The most serious concern about the amount of data sent by the bench- 
marks is the load question. How much of the network's bandwidth is consumed by 
the benchmarks being performed? If benchmarking is used prior to program execu- 
tion, this may not be a significant concern, but if measurements are needed through- 
out execution because it is a shared or dynamically scheduled environment, then the 
amount of bandwidth consumed by the measurements themselves can be a significant 
concern. 

Again, consider the network shown in Figure 3.10. Here, the link between the 
switches is on the path used by half of the measurements. Unless the benchmark- 
ing is carefully planned, far too much of this link's capacity may be used simply by 
the benchmarking. 

Avoiding excess loading may be difficult using benchmarks alone. In fact, without 
network-based information or external expertise to provide the topology, the only 
safe assumption that a measurement routine can make is to assume that all paths in 
the network use the same links, requiring them to avoid sending any more data than 
would congest the bottleneck link in the network by the targeted load factor. 
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Obviously the scalability of benchmarking algorithms is highly dependent on the per- 
formance factors chosen. The best way to calculate the scalability of benchmarking on 
this network is to select appropriate parameters and determine the frequency at which the 
benchmarks can run. As discussed above, in most cases the only feasible communication 
pattern is TV2, so that pattern will be used. The data length will be selected at 100K, which 
is still not long enough to accurately measure the available bandwidth of the 100Mb Eth- 
ernet, but is somewhat more accurate than 64K, a standard parameter selected for such 
benchmarks [118]. The load target will be 10% of the network's capacity. Starting off 
with the assumption that nothing is known about topology, the algorithm will be restricted 
to generating an average of no more than 10Mbps. After accounting for overhead, this 
amounts to IMBps of actual data. Using these figures, and assuming perfect utilization and 
synchronization between the processors, measurements can be taken every 25.6 seconds. 

Arguments can be made regarding precise choice of parameters for this environment, 
but even if the topology is known and a 64K message is used, the frequency can only be 
worked down to once every 8 seconds. 

For many applications, this measurement rate is more than sufficient. However, for 
others, such as dynamically scheduled applications, it may not be frequent enough. In 
particular, if an algorithm's performance is affected by variations that occur from second- 
to-second, it provides little information about the performance or variability of the network 
over such a time scale. 

While many applications' needs are met by the information provided by this algorithm, 
consider further the scalability implications. The network in Figure 3.10 is extraordinarily 
small, and can only be measured every 8 seconds. Consider a more reasonable sized net- 
work with 200 nodes in it. Using the original algorithm, measurements are now restricted 
to less than one per hour. Clearly, the scalability limitations inherent in benchmarking 
prevent this information from being useful to many applications. 

There are a number of modifications to these techniques that can be pursued. Attempts 
at deriving topology information can be made or optimistic assumptions can be made that 
allow multiple measurements to be made simultaneously. I will not attempt to evaluate 
these techniques, as each technique has its own benefits and drawbacks. Rather, I will 
simply discuss how the network-based prediction solves these problems. 

Network-based measurement 

In short, network-based measurements are scalable because they have an extremely small 
cost that grows with O(N). Rather than making TV2 measurements for Figure 3.10, net- 
work based measurement requires N + 2 measurements. Taking all of these measurements 
consumes less than 18K of bandwidth and consumes an almost immeasurable fraction of 
a modern switch's processing power. These measurements can trivially be taken several 
times a second. Furthermore, while the number of measurements required to monitor a 
larger network grows, multiple machines can be used to take those measurements, allow- 
ing for the taking of measurements to be scaled. 
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3.6.3   Practical implementation 

While the scalability of network-based prediction makes it a promising technique for many 
environments, there are still limitations that prevent its deployment as the sole source of 
network measurements for many environments. Foremost among these restrictions is the 
requirement that access be available to the switches and routers that form the network. In 
general, this is possible with minimal difficulty in local or campus environments. However, 
for wide-area networks, direct access to the network devices is typically not available. In 
these environments, it is necessary to use a hybrid of the network-based and benchmark- 
based measurement schemes. 

The hybrid approach is currently implemented in Remos. Furthermore, it is also very 
similar to the architecture of the Network Weather Service. In NWS, benchmarks are per- 
formed within the LAN at each campus, and then between each campus site. One of the 
reasons this scheme is successful is that, in general, the bandwidth and latency bottlenecks 
across the wide area network are much more severe than in the LAN. Therefore, the as- 
sumption that wide-area traffic can ignore bottlenecks in the local area is almost always 
true. This same architecture used by the NWS can also be used to integrate network-based 
measurements directly into systems such as NWS. 

Beyond issues of device access, there are additional issues regarding network measure- 
ment that may influence the choice between benchmarks-based and network-based predic- 
tion. The experiments I have performed to validate the network-based prediction approach 
have been based exclusively on network utilization information. Unsurprisingly, as shown 
by my simulation experiments, this approach falters when used on a saturated network, 
where complete utilization is the normal condition. While expansion of the network-based 
technique to incorporating dropped-packet information may alleviate these problems, fur- 
ther research must be done to validate expanding the approach. However, several of the ar- 
guments that work against benchmark-based measurement in terms of scalability no longer 
apply to congested wide-area networks. For example, load factor is no longer relevant, be- 
cause the bandwidth achieved by the benchmark will represent a miniscule fraction of the 
total bandwidth—and the inclusion of one additional benchmark has almost no effect on the 
bandwidth achieved by subsequent applications. Furthermore, because of the aggregation 
of thousands of connections, the performance of the network has much less short-term vari- 
ability. These practical issues make the hybrid network-based for LANs/benchmark-based 
for WANs scheme a very powerful technique. 

3.7   Related work 
A variety of systems have been developed to provide network status information. Two 
examples that provide applications with benchmark-based predictions are NWS [117] and 
Prophet [115]. SPAND [98] records similar data by storing applications' actual perfor- 
mance during execution and making this data available to help future applications. 

All prediction systems described here utilize time series prediction techniques [19]. 
Wolski has studied several different time series models for their usefulness in predicting 
network performance [116]. 
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SNMP has much broader uses than those that are described here. It is used to control 
and monitor a wide range of network resource properties [104]. Busby has explored us- 
ing SNMP to gather information about both network and CPU resource as an addition to 
NWS [22]. 

Although SNMP provides much of the information needed for distributed computing, 
it is difficult to get it in the form required. For example, there are traffic counters for each 
port, but determining a traffic rate requires multiple, carefully timed queries. It would be 
much more appropriate to have the router or switch calculate its own time-averaged rate. 
Preliminary work toward this goal is discussed in the Apmmon Internet-Draft [33]. 

Recent network research has focused on modeling the self-similarity in network traf- 
fic, and these models may lead to more realistic traffic than Poisson processes. We used 
fractional Gaussian noise to generate self-similar traffic for our experiments [89]. More re- 
alistic wavelet models have been investigated more recently [93], however these techniques 
still suffer from the problem that they generate non-adaptive traffic. Further experiments 
on network-based performance prediction will more likely benefit from adaptive synthetic 
traffic. 

3.8    Conclusions 

My experiments have demonstrated that the accuracy of the network-based technique is 
equivalent to the accuracy of the benchmark-based technique. Their performance with 
very predictable and with less predictable competing traffic is very similar. While my im- 
plementation of the network-based approach falters when faced with a link with extremely 
heavy loss, its performance should improve if dropped packet counters are included in the 
information used for prediction. The similarities in the techniques' accuracies indicates that 
other criteria, such as scalability and invasiveness, should be considered when choosing a 
network measurement and prediction technique. 

The results in this chapter demonstrate that it is possible to provide accurate predictions 
of application-level performance using low-level information. The prediction techniques 
described in this chapter utilize a history of application performance that is used to build 
the predictive model from network status to application performance. Making the jump 
to full deployment will require a different approach to building the prediction model that 
was used in these experiments. The calculations for building these models would need 
to be done less often, and would not have the application history for every observation 
as was available in these experiments. However, due to the accumulation of applications' 
history over time and an understanding of the characteristics of particular networks and ap- 
plications, the frequency at which such calibrations are required should be lower, allowing 
accurate models to be built. In summary, the initial results are quite promising, but further 
research is needed to deploy network-based prediction in production environments. 
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Chapter 4 

Topology Discovery 

Knowledge of network topology is essential for application mapping. Without it, a sched- 
uler cannot predict the links that will be shared by different messages of the same applica- 
tion. This sharing will have a large effect on the performance of the application. Topology 
knowledge also simplifies scheduling algorithms by making it possible to schedule in a 
hierarchical fashion, rather than analyzing all combinations of machines. Finally, network- 
based performance prediction requires network topology knowledge to determine which 
network components are involved in the path about which queries are being made. 

Topology discovery is difficult because user-transparency has been a great driving force 
behind the success of networking. As a result, there are no common protocols for deter- 
mining topology. However, the necessary information can be extracted using SNMP. I have 
developed algorithms to derive the topology with the information available through SNMP 
from much of today's networking hardware. My algorithm for topology discovery of a 
bridged Ethernet is the first such algorithm with provably good performance when using 
incomplete knowledge. 

When analyzing topology discovery algorithms, the most important metric is complete- 
ness. Because topologies typically change infrequently, rapid topology calculation is rela- 
tively unimportant. However, if an application is predicting its performance on the network, 
and one of the nodes it is using is either not placed on the topology or is placed incorrectly, 
then the performance prediction will be severely compromised. Therefore, I focus on the 
completeness of the topology discovery rather than the rate at which the topology can be 
determined. In practice, all of the algorithms described here calculate the topology of even 
large networks within a few minutes of obtaining the information from the network devices. 

4.1    Network structure 

Figure 4.1(a) shows the network view that is presented to the user and that is preserved 
by most programming libraries. The IP routers connecting these machines are revealed in 
Figure 4.1(b). These are the easiest components to detect. In most cases, the traceroute 
program can be used to detect routers between hosts. 

Figure 4.1(c) exposes the second level of transparency. This layer consists of the bridges 
that form the Ethernet LANs connecting the machines, and it is the most difficult level of 
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(a) (b) (c) 

I    | Host        O Router        O Bridge 

Figure 4.1: A view of networking at different levels of detail, (a) The view 
presented to the user, (b) The view at the IP routing layer, where each host 
and router explicitly forwards packets to the next component in the path, (c) 
The view including Ethernet bridges, where each bridge learns where the 
hosts and routers are and transparently forwards the packets towards their 
destinations. 

topology to penetrate, even though Ethernet is the most common LAN infrastructure. The 
difficulty comes from the beauty of the transparent bridging protocol. The algorithms that 
the bridges use to determine how to form the LAN and how to forward packets require no 
global knowledge, nor do the hosts talk directly to the bridges or are aware of their presence 
in any way [92]. Thus, the goal of transparency is completely met, at the expense of the 
ease of determining the topology of the network. It should be noted that modern networks 
are typically built with "switches," which are essentially bridges with many ports. The 
terms "bridge" and "switch" are used interchangeably both in common practice and in this 
dissertation. 

Despite the difficulties, Remos must locate all components of the network topology 
before using network-based measurement on that network. Figure 4.2 shows an example 
where available bandwidth predictions will be useless because a congested link occurs 
between two undiscovered bridges. 

4.1.1    IP routing 

IP routing topology is relatively easy to determine because the routing table each host and 
router stores and reports via SNMP explicitly lists the next hop on the route used to reach 
each destination. The IP routing topology may therefore be determined by following the 
routers hop-to-hop from source to destination. 
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Figure 4.2: An example of a network configuration where missing bridges 
can produce misleading results. In this case, missing the two bridges be- 
tween A and B misses the congested network link between them and may 
vastly overestimate the available bandwidth. 

4.1.2   Bridged Ethernet 

As originally designed, Ethernet LANs consisted primarily of shared 10Mbps segments. In 
large networks, bridges could be used to tie shared segments together, frequently just to tie 
two networks together. As Ethernet has evolved, bridges became cheaper and are now the 
primary means of interconnecting machines. Shared segments are limited to a handful of 
machines. These segments are connected with switches, which are bridges used to connect 
many shared segments together. By utilizing switches rather than shared segments, the 
aggregate bandwidth of the network is increased by separating communication that can 
follow different paths. 100Mb, 1Gb, and aggregated links allow portions of the network 
supporting heavy traffic to have a higher bandwidth than given to the endpoints, forming a 
fat-tree. 

Bridged Ethernet networks are required to use an acyclic, or tree, topology. The acyclic- 
ity requirement simplifies the task of forwarding packets by ensuring that there is only one 
path to any machine on the network. If switches are connected to form a cycle, they will use 
the Ethernet spanning tree algorithm to deactivate one link of the cycle, thereby ensuring 
the network remains acyclic.1 

The Ethernet bridging algorithm is much more complex than the IP routing algorithm. 
A bridge learns how to forward packets by listening to all traffic sent on the links attached to 
its ports. Whenever the bridge sees a packet on any of its ports, it stores the packet's source 
address and the port on which that packet was seen. This information tells the bridge the 
port on which the source machine can be found and will be used when the bridge later 
receives a packet that is destined for the source of the current packet. 

While the bridge builds its forwarding database (FDB) by observing the source address 
of each packet, it must also forward each packet it receives to the port on which the desti- 
nation node is found. At the same time it learns from the source address, the bridge must 
select from three options for forwarding that packet to one of its ports: 

'The spanning tree algorithm can be disabled on most bridges, but if a cycle is created with links, the 
network will no longer function properly. 
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• 

• 

If the destination machine is found on the same port the packet was received on, do 
nothing. 

If the destination machine is found on a different port than the packet was received 
on, the packet is resent, unchanged, on the port for the destination machine. 

• If no port is known for the destination machine, then the packet is "flooded," mean- 
ing it is sent to all ports of the bridge, except for the port that received the packet. 
Hopefully the destination machine will reply to the packet's sender. As soon as the 
bridge sees the response packet, with the source address set to the previously un- 
known machine, it will place the appropriate entry in its FDB so further flooding will 
be unneeded. 

This algorithm is known as transparent bridging, which is currently used on Ethernet LANs 
almost exclusively. More information can be found in Perlman's book [92]. 

Because this algorithm is completely transparent to the hosts, it is difficult for anyone to 
find bridges automatically or even to determine their names. One solution is for the person 
running the discovery code to obtain a list of bridges from an external source, such as the 
local network manager. A more general solution is to scan the LAN for bridges. This can 
be accomplished by sending an SNMP query for an entry in the forwarding database of the 
Bridge MIB to all IP addresses belonging to the local IP subnet. If the device responds with 
a forwarding entry, then it is in use as a bridge on the network. If it does not respond at all, 
or gives a response other than a forwarding database entry, it is either not willing to speak 
SNMP with the querying node, and therefore not useful in the topology search anyway, or 
it is not in use as a bridge on the network. 

For bridged Ethernets supporting multiple IP subnets, each range of addresses must be 
checked separately. 

Before beginning a bridge topology discovery program, the routing topology must be 
determined, as in Figure 4.1(b). Then the bridge discovery algorithm is run in each subnet 
between the routers to determine the bridging topology. 

4.2   Effects of topology on applications 

The topology of a network is one of the most important factors in determining the per- 
formance an application will see. The previous chapter dealt exclusively with predicting 
the performance achieved by an application sending a single message between two points. 
This is an extremely important topic. However, relatively few parallel applications send 
data only between two points in a network. Almost all parallel applications are designed to 
exchange several messages simultaneously. Even applications that utilize a single master 
processor for scheduling purposes frequently have multiple simultaneous communications 
occurring on the network. 

The end-to-end performance predictions discussed in the previous chapter address the 
simple case of sending one message. The performance of multiple messages may be in- 
dependent, if none of the messages interfere with each other, or the part of the network 
they share is more than adequate for their combined bandwidth. Alternatively, they may 
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Figure 4.3: Four networks used to connect ten machine, each of which 
produces 10Mb for a single measurement, but whose performance varies 
widely when used in parallel. 

share the same bottleneck, drastically reducing the bandwidth they receive by a factor of 
approximately the number of messages sharing the link.2 The network topology must be 
known to predict how a parallel application sending simultaneous messages will perform 
on a real network. 

Consider the networks shown in Figure 4.3. Each of these networks represents a dif- 
ferent way to connect ten machines together. What is unusual about these four networks 
is that each of them provides exactly the same bandwidth between any individual pair of 
nodes (in the presence of no other traffic). However, the performance of the networks varies 
drastically depending on the choice of network and combination of machines being used. 

Although simple, each network in Figure 4.3 represents a very realistic problem that is 
regularly encountered on real networks. The obvious solution for building a high perfor- 
mance 10 processor network is to use the single switch as in Figure 4.3(a). Unfortunately, 
the reality is that due to naiveness, cost constraints, or simple evolution as upgrades are 
made over time, non-ideal systems are here to stay. Furthermore, each of these networks 
might only be a component of a larger network. Although 128 port switches are available, 

2Note that there is a third case, where messages apparently sent simultaneously in the code are not actually 
sent simultaneously during execution. However, the questions of application scheduling and synchronization 
are beyond the scope of my dissertation. 
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only a network specially purchased for such a large environment would ever use only a 
single switch. In keeping with the principles of opportunistic distributed computing, my 
approach has been to enable applications to make use of what power is available to them, 
rather than restricting myself to only well-designed systems. 

The pure switched network in Figure 4.3(a) represents the ideal network configuration. 
Almost all modern switches have the internal bandwidth to switch their full, or near their 
full, traffic load between all ports. To the endpoints, the switches essentially appear to be 
a crossbar, with congestion observed only if multiple messages are sent or received by a 
single node. It is almost always best to build a dedicated cluster around a single switch. 
Thanks to the increasing size of switches, this is an achievable goal in many situations. 

Figure 4.3(b) represents the bargain basement approach to network design. No one 
would knowingly design a high-performance computing cluster connected with a hub. Un- 
fortunately, the rise of commodity computing has also allowed people who don't really 
understand the technology to build such clusters. The very low cost of current hubs makes 
them an attractive purchase to bargain shoppers. Additionally, hubs appear in other less- 
than-ideal environments. In the CMU CS department, and many others, what was originally 
a shared Ethernet was divided between floors with a single switch. Gradually switches were 
pushed further from the center of the network towards offices. A switch was placed on each 
floor and groups of offices were assigned to each port on the switch. Today, most offices 
are assigned to a dedicated switch port, with a hub connecting machines in each office. The 
wiring in the building has been extended in anticipation of providing each machine with its 
own switch port. 

Concurrent with the evolution of the general department network has been the devel- 
opment of a number of independent research networks. Although primarily used in project 
labs, a few different networks have spanned the building, resulting in some machines in of- 
fices being connected to a totally different network than other machines in the same offices. 
Because these research networks are controlled by other groups than our normal network- 
ing staff, they are maintained to different standards than the central network. For instance, 
although the departmental network has focused on providing switches wherever possible, 
there is a research network that has 40 machines on a hub-connected shared segment. Even 
in our "modern" environment, hubs exist where they shouldn't. 

Figure 4.3(c) shows a more typical network, where each machine is connected to its 
own port on a switch, but the two switches are connected with a link that can become 
a bottleneck when used by multiple simultaneous messages. Because no single pair of 
machines can detect this bottleneck, it is important to have a network-based technique to 
acquire the topology to determine such bottlenecks. 

Figure 4.3(d) represents an improvement in the common network configuration de- 
picted in Figure 4.3(c). Rather than connecting the two switches with a link equal to the 
endpoint links, a higher bandwidth link is used. Gigabit Ethernet has made this type of 
connection much more feasible—in fact, our current departmental per-floor bridges are 
connected with the central bridge using two aggregated gigabit Ethernet links. Prior to gi- 
gabit Ethernet, 155Mbps ATM was commonly used to supply higher backbone bandwidth, 
although it was easily congested with multiple 100Mbps clients. 
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In Figure 4.3(d), this backbone link eliminates the possibility of congestion on this 
network. However, were more machines connected to this network, it would again be 
possible to generate congestion. In this case, it is impossible to detect such a link without 
using a very large number of machines. 

4.2.1    Benchmark-based topology 

Because of the importance of topology information for scheduling distributed applications, 
a number of projects have studied ways to analyze the topology of networks, both wide-area 
and local-area networks. Several such projects are described below. 

WAN topology 

Wide-area performance is fairly easy to measure and it is much easier to predict because 
of the effects of traffic aggregation. There are frequently very significant performance dif- 
ferences between pairs of machines among several sites. Additionally, for most network 
environments the WAN bandwidth is at least an order of magnitude lower than LAN band- 
width. This difference allows benchmarks to be used to measure wide-area performance 
with little concern about the influence of local-area characteristics on the measurements. 

The most common technique for determining WAN topology is to use benchmarks 
to measure bandwidth across the topology. This technique is rather trivial to implement 
when running measurements from a single machine to a variety of other Internet sites to 
calculate their distances from the first site, but more recent projects have focused on using 
measurements from multiple sites to build a topological picture of the Internet. Topology-d 
was an earlier project that used measurements to build a minimal spanning tree view of the 
network [87]. Current work, such as the IDMaps project [61] and the work of Theilmann 
and Rothermel [112] build network distance maps, a more flexible representation of the 
network's topology. Their research has studied the best types of benchmarks as well as 
placement of the sites running the benchmarks for accurate topology determination. 

A lower level approach has been to use the hop-by-hop feedback provided by tools 
such as traceroute. The Mercator project [51] has explored this technique to group IP 
addresses by network topology produce an Internet map. Although many modern routers 
no longer respond to traceroute packets, they have achieved good results on the modern 
Internet. NEVII [1], which is a general architecture for controlling Internet probes, has 
been used to control both bandwidth and traceroute benchmarks and has also provided 
useful information about the separation between Internet sites. Skitter has been developed 
by C-ATDA to combine traceroute and benchmark-based analysis [23]. Octopus combined 
SNMP routing information, traceroute, measurements, and heuristics to determine network 
topology [101]. 

These projects have all been quite successful at providing information to applications 
concerned about the impact of wide area topology. However, because of the performance 
and implementation differences between WANs and LANs, they do not address the issue 
of LAN topology discovery. 
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LAN topology 

Although there has been a significant amount of research studying the importance of topol- 
ogy in task placement for local area networks [2,30,44,62,69,103], there has been less 
work on the automatic determination of LAN topology than WAN topology. A number of 
projects have looked at discovering the topology between IP routers, but because the most 
interesting portions of LAN topology are generally formed by level 2 devices, they have 
been unable to address the majority of LAN topology issues. 

My earlier work with ECO addressed the LAN topology problem by sending bench- 
mark messages between every pair of machines in the network [73]. At that time, ECO 
was able to use application-level measurements to detect the performance penalty imposed 
by the switches and routers used to connect machines in the CMU CS department. Those 
measurements allowed ECO to build an accurate picture of the network's topology. For- 
tunately, network technology has advanced to the point where observing the impact of 
network devices is no longer that simple. 

More recent work by Shao, Berman, and Wolski has focused on using measurements 
benchmark measurements to determined functional differences between machines in the 
network, which they refer to as effective network views [99]. Their technique has three 
stages. First, they send a benchmark between a central test machine and each other ma- 
chine of interest. The initial results are used to partition the machines into clusters with 
similar bandwidths to the test machine. The next step is to perform the same measure- 
ment simultaneously between the test machine and pairs of machines in each cluster. If 
the measurement performance degrades significantly, then the machines are kept in the 
same cluster, if not they are placed in separate clusters. After completion of this phase, 
the machines in the network are divided among clusters between which there is a notice- 
able difference in network performance with the test machine. A third phase may be used 
between machines in a cluster to detect private networks within that cluster. 

Although there is the allowance for private networks, effective network views focus on 
the performance of the network as seen from a single machine. From this perspective, it of- 
fers a very complete view of the network's performance and offers information regardless 
of whether the machines are distributed across a LAN or WAN. For an application such 
as the master-slave Mandelbrot set application studied in their paper, this view is ideal. 
On the other hand, there are environments and applications for which the single machine's 
perspective of the network is less than ideal. Applications without a single master exchang- 
ing messages, or applications wishing to select the best master, will benefit from views of 
network performance from different machines in the network. 

4.2.2   Motivation for explicit topology 

It is easiest to motivate the need for topology information when discussing a regular ap- 
plication with large amounts of collective communication—because many messages will 
be exchanged simultaneously, the penalty for messages sharing links can be very great. 
To show that this information is also useful with irregular applications with independent 
tasks, I will instead begin by analyzing the Quake Viz application according to its topology 
requirements. 
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Figure 4.4: The stages of processing a frame for Quake Viz. a) shows the 
stages needed for processing, b), c), and d) show various partitionings of the 
process, according to the resources available to the applications 

Quake Viz was previously discussed in Section 3.6.1. The application consists of pipe- 
lined tasks, with varying communication and computation costs between each phase. De- 
pending on the network and computational power available, it is possible to perform the 
entire application on a remote server, or to do some processing at the remote server before 
sending the partially processed data to a machine closer to the client for final finishing. 
Because Quake Viz is a real-time application with performance requirements for interactive 
use, it is important that the resources used for the computation be capable of meeting the 
application's needs in real time. 

Figure 4.4 depicts several possibilities for partitioning the phases of the Quake Viz ap- 
plication on different processors according to the available resources. The portion of the 
problem that is not illustrated by these drawings is that, because of the time required to ren- 
der each frame, there are several Quake Viz frames being processed simultaneously. There- 
fore, this is not merely a single pipeline, but a parallel pipeline, as depicted in Figure 4.5. 

The difference between conventional pipelining and parallel pipelining has several im- 
plications for scheduling Quake Viz applications. The most important is that although the 
application is conceptually a pipeline, because it is parallelized multiple frames will be 
sharing the system resources simultaneously. Although the active frames used to imple- 
ment Quake Viz are each dynamically scheduled, the parallel nature of the frames needs 
to be considered, as well. The links along the path between the client and server must 
be able to handle the load generated by the simultaneous frames. Furthermore, various 
parameters that affect the workload for each frame are chosen when the frame is created 
and require additional cost to change later in the execution process. If the frame is ini- 
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Figure 4.5: This figure illustrates how the parallel pipeline approach to a 
distributed application results in several frames at varying stages of comple- 
tion being processed simultaneously. The top diagram indicates the phases 
each frame completes, with the lower diagrams indicating the progress of 
each frame. The scheduler must ensure that each frame receives the compu- 
tation it needs and can be transferred across the network to the client desktop 
prior to its deadline. 

tially planned to be sent over to the client's site for final processing, but upon reaching that 
phase, insufficient computational power is available, then the frame will either need to be 
changed, or processed remotely and transferred to the client's location. These changes may 
correspondingly affect the network load imposed between the sites. 

The central issue in scheduling Quake Viz is understanding the relationship between 
the workload involved in planning the application and the location of the computational 
resources along the network topology. Locating the computational resources needed by the 
application on the network's topology graph allows the link sharing between the parallel 
frames to be considered in planning the execution. Although dynamically scheduled, there 
is a substantial penalty for a frame missing its deadline. If a frame is completed, but 
cannot be delivered, or must be transferred back across a congested link because a mistake 
was made in where to schedule the frame, application performance will suffer. Without 
knowledge of the network's topology, it is possible to make substantial mistakes that can 
prevent reasonable real-time interaction from being achieved. 

4.3   Processor selection example 

Processor selection is one of the key issues for distributed applications. Although I briefly 
discussed it above, its importance merits a further look. One of the first uses of the Remos 
interface was a processor selection algorithm used by several applications. Without the 
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support of the Remos topology interface, it would have been difficult, or even impossible, 
to develop. In this section, I will include a description of the algorithm and the results it 
obtained to demonstrate how a real program made use of the topology information available 
in Remos. More details may be obtained from the original paper [107]. 

4.3.1    Node selection procedure 

This algorithm makes use of the topology graph available through Remos, as well as addi- 
tional information on computational power. For notation purposes, the network topology 
graph is an undirected connected graph G(n) containing n nodes. A node in this graph is 
a compute node or a network node. A compute node represents a processor that is avail- 
able for computation, while a network node represents a network device used for routing 
communication. The edges in the graph represent communication links between the nodes. 

A function cpu(i) is defined for each compute node n* and it represents the fraction of 
the computation power of the node that is available to an application. The cpu function is 
computed from the load average on a processor as follows: 

cpu = 1/(1 + loadaverage) 

The justification is that the load average represents the number of active processes, and the 
processor will be equally shared by those processes and the user application process. That 
is, we are implicitly assuming that all jobs have equal execution priority. 

Functions maxbw and bw are defined for each pair of nodes connected by an edge. 
maxbw(i,j) is the peak bandwidth between the nodes n» and rij, while bw(i,j) is the 
corresponding currently available bandwidth. We also define bw factor, as the fraction of 
the peak bandwidth that is available, i.e.: 

bw factor = bw/maxbw 

Fundamental node selection algorithms 

We present algorithms for node selection for maximizing available computation capacity, 
for maximizing available communication capacity, and with different weightage to compu- 
tation and communication. We make a number of assumptions here, in part to simplify the 
presentation. We assume that the network topology graph is acyclic, i.e., there is only one 
path for data to travel between a pair of nodes. We also assume that the network environ- 
ment is homogeneous, i.e., all computation nodes are identical and all communication links 
have the same capacity. The basis used for communication optimization is only bandwidth. 
These assumptions as well as well as the algorithmic changes required to relax them are 
discussed in the full paper [107]. 

Maximize computation capacity 

For a homogeneous system, node selection for maximizing available computation capacity 
can be done effectively by simply choosing the nodes with the least amount of load. In our 
graph terminology, if an application requires m nodes, we simply select the m nodes with 
the highest values of the cpu function. 
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Input: A connected logical topology graph G(n). Number of nodes re- 
quired for execution m and given that number of compute nodes in G is at 
least m. 
Output: A set M containing m nodes that maximizes the minimum band- 
width between any pair of selected nodes. 

1. M = {Any m compute nodes in G} 

2. Remove the edge with the minimum available bandwidth (lowest bw) 
from G. 

3. Find the largest number I of connected compute nodes in G, and let 
the corresponding connected graph component be L. 

4. If (/ > m) 
M = {Any m compute nodes in L} 
Goto Step 2. 

5. M contains an optimal set of m nodes. 

Figure 4.6: Algorithm to select a set of nodes to maximize the minimum 
available bandwidth between any pair of nodes 

Maximize communication capacity 

The criterion used for node selection for maximizing available communication capacity is 
to maximize the minimum of the available bandwidth between any pair of selected nodes, 
i.e., to minimize the bottleneck communication path. Note that we are assuming that all 
communication links have equal capacity, but the available bandwidth on a link is a dynam- 
ically varying quantity, and will, in general, be different for different links. An algorithm 
that selects a set of nodes to optimize available communication capacity based on the above 
criterion is outlined in Figure 4.6. 

This algorithm is based on the following simple observation. For a set of connected 
nodes in an acyclic topology graph, the least bandwidth between any pair of nodes in the 
set cannot be less than the lowest edge bandwidth in the graph. Hence, by repeatedly 
removing the minimum available bandwidth edge until there no longer exists any connected 
component with m nodes, the node-set that maximizes the minimum available bandwidth 
between any pair of nodes is obtained. In terms of the algorithm description in Figure 4.6, 
the size / of the largest connected component L of graph G will keep decreasing as the 
minimum bandwidth edges are removed from the graph. Eventually this size will become 
less than m, the number of connected nodes required for execution. At that point, a set of 
m nodes picked from the previous L (which are in the current set M) are selected as an 
optimal set of nodes for execution. 

To sketch a proof that this algorithm returns the optimal set of m nodes contained in 
G, assume that there exists a set M' in G such that the lowest bandwidth link in M' has 
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greater bandwidth than the lowest bandwidth link in M. For M' not to have been returned 
by the algorithm implies that at some point M"s lowest bandwidth link was removed in 
step 2. However, this could not have happened because the lowest bandwidth link in M 
would have been removed first, because it has the lower available bandwidth. Therefore, 
by contradiction, this algorithm cannot return a set other than the optimal set M. 

4.3.2   Experimental setup 

The node selection procedures presented in this section have been implemented and tested 
on a networking testbed at Carnegie Mellon. To validate the algorithms, node selection was 
performed in the presence of realistic computation and communication loads. We describe 
the setup for experiments and then present results. 

Network testbed 

All experiments were performed on a part of a networking testbed at Carnegie Mellon. The 
part of the testbed used for these experiments employs DEC Alpha compute nodes, Cisco 
routers, and 100 Mbps ethernet links with one 155Mbps ATM link. 

Load and traffic generators 

Procedures for automatic node selection should do a good job with realistic loads and traffic 
on the network. But it is virtually impossible to define what is realistic, as the load and 
traffic conditions vary dramatically in network environments. For the purpose of obtaining 
credible results, we used the results of recent research in characterizing resource usage 
patterns, and set parameters intuitively to reflect a testbed that is used primarily for data 
and compute intensive computations. 

A synthetic compute intensive job was periodically invoked on every node. Processor 
load was generated using models developed by Harchol-Baiter and Downey, whose mea- 
surements indicate Poisson interarrival times, with job duration determined by a combina- 
tion of exponential and Pareto distributions [54]. Because we are interested in environments 
which support compute and data intensive computations, higher parameters were used for 
the load generators than would be used to represent typical interactive systems. Assuming 
that our target environment is a cluster or group of workstations in a single department, the 
workload distribution study by Harchol-Balter should be accurate, because their model was 
derived from observations in such an environment. 

For generating network traffic, messages were periodically sent between random nodes. 
Message interarrival times were Poisson, with message length having a LogNormal distri- 
bution. The bulk of the research in network modeling has focused on Internet-level traffic 
representation, rather than for local area networks. Although there are problems with using 
Poisson interarrival times for representing bulk traffic and some characteristic of aggre- 
gated traffic, it represents the interarrival times of the large high-speed data transfers we 
would be most concerned about in our target environment rather well [90,91]. 

A full validation of the strengths and weaknesses of our techniques would require a 
large number of experiments with different network usage models and different parameters. 
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Application Execution Time with External Load and Traffic (seconds) Reference 
Randomly selected Nodes Automatically selected Nodes Execution 

Name No Processor Network Load+ Processor Network Load+ time on 
of of Load Traffic Traffic Load Traffic Traffic Unloaded 

Program Nodes sees. sees. sees. sees. sees. sees. Testbed 

FFT(IK) 4 112.6 80.3 142.6 82.6 64.6 118.5 48 
Airshed 5 393.8 281.3 530.2 254.0 188.5 355.1 150 

MRI 4 683 591 776 594 571 667 540 

Table 4.1: Performance in the presence of computation load and network 
traffic with automatically selected nodes and random nodes 

While we are not at this stage in our experiments, we believe that a study with load and 
traffic generators that are realistic in some environments does establish the fundamental 
value of our node selection procedures. 

4.3.3   Results 

We employed the following 3 applications: 2D fast Fourier transform (32 iterations), Air- 
shed pollution modeling (6 hour simulation) [108], and magnetic resonance imaging^/ 
dataset) [40,50] to validate our decision procedures. Each application was executed sev- 
eral times with the computation load generator on, network traffic generator on, and with 
both generators on. Node selection was alternately made randomly and with our automatic 
node selection procedure. Our experience and previous results indicate that random node 
selection and node selection based on static network properties give virtually identical per- 
formance on a small testbed with all high speed links like ours [74], and hence the random 
selection results also apply to static node selection procedures. On a small network such as 
this, benchmarking could be used to determine the location of the bottlenecks. We chose 
not to examine such techniques because we were interested in techniques that would scale 
well to larger environments. The results are presented in Table 4.1. Each measurement is 
the average of a number of executions spanning several hours. Since the activity on the 
network is changing continuously, a large number of measurements is necessary to have 
statistically relevant results. 

We observe that for all three applications, the load and traffic generators significantly 
increase the execution time, as compared to the the time with no load (last column of the 
graph), and their combined effect is cumulative. The impact is fairly high for the FFT and 
Airshed programs (range of 300% with both generators on and execution on random nodes) 
but relatively modest for MRI(maximum of around 25%). The reason is that the FFT and 
Airshed programs are loosely synchronous parallel computations where any computation 
or communication step can become a bottleneck, while MRI uses a master-slave protocol 
for compute intensive regions that automatically adapts if a compute or communication 
step slows down. 

In each of these cases, automatic node selection reduces the execution time significantly 
as compared to random node selection, specifically 8-14% for MRI, 16-23% for FFT and 
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32-35% for Airshed. We now focus on the increase in execution time due to traffic and 
load. When using random nodes and with both traffic and load generators on, the FFT time 
went up from 48 to 142.6 seconds (201%), Airshed from 150 to 530.2 seconds (253%) and 
MRI from 540 to 776 seconds (43.7%). Correspondingly, with automatic node selection, 
the increase in execution time was 145% for FFT, 103% for Airshed, and 23% for MRI. 
Making similar comparisons for other cases, we come to the result that the increase in 
execution time due to traffic and/or load is approximately cut in half with automatic 
node selection. While we should caution that this result is certainly not applicable to all ap- 
plications or network conditions, it clearly demonstrates that our node selection procedures 
are effective in reducing the impact of link and processor sharing on applications. 

4.3.4 Related work 

Scheduling applications over wide-area distributed systems has attracted considerable at- 
tention. Program archetypes are an attempt to develop a framework for building appli- 
cation-class specific parallel adaptive code [27,31,76]. More recently, AppleS [11,12] has 
been designed for application-centric scheduling of tasks over heterogeneous wide-area 
networks. It relies on Network Weather Service [117] for resource information. Research 
with similar goals in the Legion framework is described in [114]. In the process of applica- 
tion scheduling, these systems also address the problem of selecting nodes for execution. 

Many application-specific network measurement and adaptation systems have been de- 
veloped, some examples being [16,58,98, 111]. An important goal of this research is to 
develop a framework that can be used by a large class of applications. A shared memory 
based approach to adaptive parallelism is explored in [96]. 

Node assignment and scheduling algorithms in the literature typically do not treat com- 
munication in realistic detail, but some recent exceptions are [13,109]. Several runtime 
support systems have been developed for partitioning and scheduling computation and 
communication, an example being [100]. However, the primary job of theses systems is 
not node selection but application scheduling. 

4.3.5 Lessons from cluster selection 

Automatic selection of network nodes for parallel and distributed programs is a hard prob- 
lem and this work introduces a solution framework with a new node selection algorithm. 
We have made a number of assumptions in order to develop a manageable solution, and 
certainly more research and experimentation is needed for a more general solution to this 
problem. However, we have obtained good results on real applications under a realistic 
load and traffic scenario. This is a tough and realistic way to validate this research, even 
though it does not establish the generality of the techniques. We specifically demonstrate 
that our load selection framework was effective in halving the effect of network congestion 
and machine sharing on application turnaround time. Hence, we believe that we have a 
good solution and this work represents an important step towards making networked sys- 
tems like workstation clusters and metacomputers a practical and attractive platform for 
performance sensitive applications. 
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The node selection algorithms presented in this section are an excellent demonstra- 
tion of the usefulness of the topology information available through Remos. Because the 
network information is available in a graph form, rather than as pairwise bandwidth ob- 
servations, it is possible to design algorithms that rely on linear operations to determine 
the minimum bandwidth link, rather than forming crude groups of nodes based on similar 
performance, such as in ECO. This is a good illustration of a technique that simply can't 
be accomplished with only higher-level, network as a cloud, measurements. 

4.4    Local gap example 

The local gap is a parameter designed to represent the communication support distributed 
systems offer for applications using neighborhood communication. The local gap presents 
an important juxtaposition between the requirements for low-level network information and 
dealing with the application at a high level. On the one hand, the local gap cannot be calcu- 
lated without the detailed topology, capacity, and utilization information about a network 
that can only be obtained through direct access to the network components themselves. On 
the other hand, the local gap itself is intended for use as a high-level parameter, describ- 
ing with only one number the performance of an application on a particular network. The 
local gap is especially interesting for my thesis because it demonstrates the importance of 
low-level knowledge even when building high-level support tools. 

This section introduces the local gap, an extension that allows the LogP model to be 
applied to heterogeneous systems. For parallel applications requiring only collective and 
neighborhood communication, this allows the performance of an application to be evalu- 
ated across a variety of machines in the heterogeneous network. I describe the local gap and 
present initial results obtained in simulations that justify its use as a heuristic for evaluating 
the performance of parallel applications on heterogeneous irregular networks. 

4.4.1    Motivation for the local gap 

Unlike well-designed MPP networks, large distributed networks may have disproportion- 
ate local bandwidths and aggregate bandwidths for global operations. A tree-structured 
system with the same speed links at all points has good local performance, but suffers from 
bottlenecks at the higher levels of the tree. On the other hand, modern network technology 
offers the ability to construct fat trees using faster network connections or aggregated links. 
A system with slower links attached to the processors than between switches, a situation 
common in today's LAN models, may experience bottlenecks only at the leaf links connect- 
ing to the processors. These bottlenecks are a major failing of network-based computing, 
but for applications that require little communication or only the type of communication 
that a particular network can do well, they do not detract from the usefulness of such sys- 
tems. What is needed for all systems is a metric that predicts the performance of the type 
of communication that an specific application requires on a particular network. 

The natural way to represent this performance is to establish separate parameters re- 
flecting the ability of a network to perform local and global communication. The perfor- 
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mance of global communication is largely dependent on bisection bandwidth, and there is 
little reason to indicate that this should be different for a distributed network. For the local 
behavior, however, the critical issue is how well the application's structure maps onto the 
actual topology of the network. 

The success of the gap parameter at predicting the behavior of applications on MPPs 
makes utilizing the same concept with NOWs and other distributed systems appear promis- 
ing. The gap cannot be applied directly, however, because of its foundation in representing 
homogeneous systems, such as MPPs, where nodes and links are identical and there are 
few bottlenecks. 

To apply the gap parameter to distributed systems, a new term called the "local gap" is 
introduced to represent the gap experienced when performing a computation using neigh- 
borhood communication. Local gap is denoted gu where i is the degree of tasks in the 
application structure. Its meaning is identical to the standard gap, except that it consid- 
ers only nearby processors, whereas the standard gap considers communication with all 
processors. The standard gap will be denoted #00 to retain clarity. 

The gap is the ratio between computational speed and communication bandwidth. To 
determine the local gap of each processor, its computation speed is divided by the band- 
width available per task edge when the task graph is mapped to the network topology. 

Because of the inherent asymmetry of networks, the local gap may not be uniform 
across the entire system. One would generally expect the minimum local gap to be used to 
represent the entire network, since these processors would be a bottleneck in most compu- 
tations. 

4.4.2   Determining the network load 

The first step in calculating the local gap is determining the bandwidth available for each 
communication edge in the task graph once it is mapped to the network. Once a mapping is 
determined, the load factor, or number of communication edges sharing a physical network 
component, can be determined for each network component. The load factor can be used 
to predict the bandwidth available for the application's communication requirements. I will 
refer to the set of load factors on all components of the network as the network load. 

By its definition, the network load can only be strictly determined when given both the 
set and topology of processors and a mapping from the structure to be used by an applica- 
tion to that set of processors. Because it is infeasible to do this while making scheduling 
decisions, it is necessary to provide an approximation without calculating an exact mapping 
so the network load can be determined quickly. To calculate the network load efficiently, I 
propose a heuristic method which makes use of the general characteristics of the applica- 
tion's structure. 

Both communication requirements and network performance have been divided into 
local and global components. For network performance, the local aspect is the set of band- 
widths at the leaves of the network where the processors are and the global aspect is the 
set of bandwidths higher in the network, connecting portions of the network. The charac- 
teristics of the application's structure will also be divided into these two categories so the 
calculations naturally match the structure of the network. 
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An important characteristic for determining the local performance of an application on 
a network is the degree of the tasks in the application's structure. Task degree may be fixed, 
as in the case of a torus, which has no external nodes, or it may be variable, as in the case of 
a mesh without periodic boundaries, which has nodes along its border. The degree of a task 
in its communication graph determines the load factor placed on the link connecting it to 
rest the network. For preliminary purposes, a fixed "characteristic" degree will be chosen. 

To determine the global characteristics of a structure, consider how it would be parti- 
tioned into sets of k and n — k tasks. A straightforward technique for partitioning a mesh, 
for instance, is to simply divide along an appropriate row or column. Optimal solutions 
are possible, but a scheduler may not be able to achieve optimality for each partition when 
scheduling an entire application. It is desirable that the partitioning be something that a rea- 
sonable scheduler could actually achieve, rather than being an optimal partitioning, such 
as partitioning a mesh into rectangles, which may only work under certain conditions, or 
an extremely bad partitioning with non-contiguous portions [28]). The simple split parti- 
tioning works well for small numbers of processors, but as n grows larger, bulk properties 
begin to dominate, so a more appropriate partitioning technique will be used. 

Both local and global structure characteristics can change as the number of tasks in 
the graph increases, so it is important to consider these effects if the set size is not known 
in advance, as decisions made when beginning to select a group of processors may have 
different ramifications as the group expands. It should also be noted that the above dis- 
cussions assume that the number of tasks in the application structure under consideration 
are approximately equal to the number of processors. Many applications may be able to 
distribute their load between processors in a much finer grain. 

4.4.3   Heuristic for approximating the network load 

There are three major components to a network topology: processors, switches, and links. 
Each component can be a bottleneck to the flow of data. Using the characteristics of the 
structure, it is possible to determine the load factor for each network component so that the 
total network load can be calculated. 

Processors 

The load factor on a processor is simply the 
characteristic degree of the tasks in the structure. 

Links 

IHHI 
IHHI 
IHHI 
IHHI 

© r The load factor on a network link that partitions the net- 
work into k and n — k processors is determined by the parti- 
tioning heuristic described above. The load factor will never 
be lower than the characteristic degree of tasks. 
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Switches 

The load factors across switches are important because some network 
switches can connect to a higher aggregate bandwidth of links than they can 
internally support. Also, switches may be used to represent the behavior 
of shared media. To calculate the load factor on a switch, it is sufficient to 
find the sum of load factors of all links incident on the switch and divide 
by two. Since switches can never send or receive messages, this determines 

the expected load factor for the switch. When switches are attached directly to processors, 
the average degree of nodes is used rather than the characteristic degree. This is because 
switches that are attached to several processors are more likely to experience the average 
processor behavior than to have to deal exclusively with outliers. 

4.4.4 Local gap 

Once the network load has been calculated, calculating the local gap is simply a matter 
of calculating the ratio between the computational power and per-channel bandwidth in 
the network. If the application is synchronous and incapable of load balancing, then the 
local gap is the minimum computing power of the nodes divided by the bandwidth of the 
bottleneck link in the network. Using typical metrics, this has units of flop/byte. 

In the more common case, where the application is capable of performing load bal- 
ancing, then the computational work, and, correspondingly, the communication, may be 
unevenly spread across the network. To calculate the local gap in this case, consider each 
link in the network. Calculate the average CPU power on each end of the link, and take the 
maximum of the two values. Then, divide this number by the bandwidth per channel on 
the link. This gives the local gap for each link. The local gap across the entire network is 
the maximum local gap for any component of that network. 

4.4.5 Simulated verification 

To verify the usefulness of the local gap, I have run a series of simulations using randomly 
generated network graphs. The use of simulations allows the heuristic to be compared 
across widely varying network topologies—much more varied than would be easily possi- 
ble on real networks. 

Topology generation 

To generate the network topologies used for the simulation, first ten graphs were generated 
for each size network. Each graph was annotated with six different bandwidth assignments. 
This combination resulted in sixty total network topologies providing a variety of perfor- 
mance characteristics. 

The graph generation algorithm was designed to produce a variety of realistic tree 
topologies. As such, the algorithm was designed to produce a network where CPUs are 
connected only to switches on the leaves of the topology. These leaf switches are then 
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connected with internal switches that only connect to leaf switches—there are no internal 
CPUs. 

Specifically, the algorithm first generates the leaf switches with a normally distributed 
number of CPUs attached. To achieve the exact number required in the network, if it 
generates too many CPUs, it selects a previously generated switch to discard. This process 
is continued until it achieves exactly the target number of CPUs. 

To connect the leaf switches, the algorithm first places all previously generated switches 
in an UnconnectedSet. It then creates a new switch and selects its degree as a uniformly 
distributed number between 2 and a specified maximum switch degree. This number of 
switches are randomly removed from UnconnectedSet and connected to the new switch. If 
there are not enough switches in UnconnectedSet, then all remaining members are used. 
The new switch is then added to UnconnectedSet. This process is repeated until there is 
only one switch in UnconnectedSet, which will be designated the root of the graph. 

For these experiments, leaf switches had N(5,3) CPUs attached to them. Internal 
switches connected between 2 and 4 switches. 

The links in each graph were then assigned six different bandwidth combinations. For 
these experiments, the links are bidirectional, with the same bandwidth in each direction. 
To simplify the scheduling problem, all CPUs attached to a leaf node have the same band- 
width. If it is changed, that bandwidth is changed for all nodes. The combinations were: 

Fixed Each link in the graph is assigned the same bandwidth, here U(l, 25)MBs. 

Fixed with outliers The same graph as before, but with two randomly selected links given 
bandwidths a factor of Z7(2,4) higher. To select a link, first a switch is randomly 
selected. If that switch is a leaf switch, then the bandwidths of the links connecting 
to its CPUs are raised. If the selected switch is an internal switch, then one of the 
links connecting it to another switch is selected. 

Fixed with bottleneck The first graph again, but with one randomly selected link having 
its bandwidth lower by 1/U(2,4). 

Random Each link in the graph is assigned a bandwidth of [7(2, max) where max = 
£7(1,25)MBs for all links. 

Proportional Each link the graph is assigned a bandwidth proportional to the minimum 
number of CPUs found on either end of the length. The base bandwidth here is the 
bandwidth of the fixed graph divided by three. 

Proportional with bottleneck The previous graph with one randomly selected link having 
its bandwidth lower by l/U(2,4). 

Application 

The application used for this experiment is FDTD, an electromagnetic field solver used 
to study antenna patterns, calculate electromagnetic scattering from targets, and examine 
fields within small circuits and boards [63,64]. The code uses a uniform three dimensional 
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Cartesian grid with staggered cells and is divided among processors on a two dimensional 
grid. Each processor maintains ghost cells at its boundaries to minimize the effects of 
network latency. The code was originally developed for use in a Beowulf cluster. It was 
one of the early programs developed for Beowulfs that showed equivalent performance to 
a T3D MPP at substantially lower cost [65]. 

Because only the communication was of interest for these simulations, the application 
essentially consists of tasks communicating along a non-periodic mesh, with each mes- 
sage being 228528 bytes long. When run on a network of 300 Mhz Alphas connected via 
100Mb switched Ethernet, the problem size generating this data executes at approximately 
85% efficiency. Note that because the message size was fixed as the number of processors 
increased, this is equivalent to increasing the problem size proportionately to the number 
of processors being used. 

Application mapping 

As mentioned previously, the application mapping algorithm requires the bandwidths of 
each link connecting a CPU to its leaf switch to be the same for all CPUs connected to 
that leaf switch. This allows the mapping algorithm to simply assign processes to the leaf 
switch, without having to further optimize the mapping. The mapping algorithm relies 
on a greedy heuristic to do the initial task assignment, followed by swapping to improve 
performance. 

The initial assignment is done by sorting the tasks from highest to lowest bandwidth 
requirement, selecting randomly in the case of ties [62]. For this application, the internal 
tasks have identical bandwidth requirements, followed by boundary tasks. After selecting 
a task, it first checks if any messages are exchanged with tasks already assigned. If so, it 
assigns the new task to the leaf switch with CPUs for additional tasks and with the tasks 
with which the most data is exchanged. If an assignment cannot be made with this rule, 
then it assigns the task to the leaf switch with the highest bandwidth connection, preferring 
leaf switches without any tasks already assigned. 

After the initial assignment, a deterministic swapping algorithm is performed to reduce 
the bottleneck link in the resulting network load. First, the most congested link in the 
network is found. The tasks exchanging messages across that link are identified. The 
algorithm examines each pair of tasks, each pair having one task from each side of the 
link, and determines which swap most reduces the traffic on the bottleneck link. This 
swap is then made to the mapping. This algorithm is repeated until it can make no further 
improvements to the bottleneck link on the graph. 

The final phase of the algorithm implements a randomized swapping algorithm sim- 
ilar to that described by Kernighan and Lin [66]. The algorithm first marks all tasks as 
unswapped. It then randomly selects an unswapped task. Next, it tries to swap that task 
with all other unswapped tasks. It makes the swap that has the best performance and re- 
moves both swapped tasks from the unswapped list. This is repeated until all tasks have 
been swapped. Note that this algorithm may select to make a swap that actually makes 
the performance of the task assignment worse. This behavior is an attempt to avoid local 
minima in the mapping's performance. 
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FDTD performance on generated networks 

10 

c _o 
'■4—» 

c3 
O 

'c 
3 

1    r- 

£       0.1   =- 
o 
U 

0.01 

: 1 r- —1 1- -i—r i i I 1 1 1 1—i—i—rn 

:      16 nodes 
-      32 nodes 

64 nodes 

+ 

X 

* %       x    *   - 

:        * 4 ++ 
:    ++ 

IF 
■at. 

1         x   * *  * 

■ ■ i          

0.1 1 

Local Gap 

10 

Figure 4.7: Communication time versus local gap for the FDTD application 
on randomly generated networks of 16, 30, and 64 nodes. 

Although a number of the ideas used in these three phases of the mapping algorithm are 
based on other published mapping algorithms [28,62,66], this is not a reimplementation of 
any specific published algorithm. It is certainly not guaranteed to provide optimal results. 
In bench checking this implementation on several randomly generated 16 and 25 node 
mappings, this implementation always performed as well, or better, than my attempt to 
determine the optimal mapping. 

For the experiments described here, the entire mapping procedure was run several times 
for each generated network, to determine as close to the optimal mapping as possible. 

4.4.6   Simulation results 

Figure 4.7 presents the combined results from the simulation experiments. For these results, 
the CPU power was fixed at 1, representing uniform computing power on every node. A 
more thorough evaluation would require this variable to be relaxed. In this case, because 
the application, as simulated, did not support load balancing, the only factors of interest 
in performing the mapping are the minimum CPU power and the bottleneck bandwidth, 
which are used to determine the local gap. 

The linear fit of the results, and especially its consistency across three different appli- 
cation sizes, is an extremely promising result for the local gap. Further work, and corrob- 
oration with real experimental work, is needed to validate its use as a significant metric of 
the capabilities of distributed systems. 
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4.4.7   Lessons from the local gap 

The local gap is an excellent example of how the detailed topology information made avail- 
able through Remos can be used to meet an application's high-level needs. In many cases, 
an application programmer may not want to manage the level of detail offered through the 
topology interface. Even in these cases, however, the information about the topology can 
be of use. The local gap is a very simple metric that applications can use to make decisions, 
but it reflects details that are simply impossible to calculate without topology knowledge. 

4.5   Ethernet topology discovery algorithm 

As described earlier, the challenging problem in topology discovery is dealing with Eth- 
ernet LANs. However, the previous examples all require LAN topology information, so 
it is necessary to develop an algorithm that discovers Ethernet topology in spite of the 
transparency designed in the Ethernet protocol. 

A bridged network containing the nodes N can be divided into a set of bridges, B, and 
endpoints, E. E consists of both hosts and routers, which are identical to hosts for the pur- 
pose of the Ethernet bridging algorithm. Bridged Ethernet networks may also include hubs, 
which serve to connect several machines off of one port of a bridge via shared Ethernet. 
Hubs merely join a segment of shared Ethernet and are logically just another address on 
that shared segment. Although hubs are physically on the internal portion of the Ethernet 
tree, they are actually considered endpoints because they act as just another machine on 
that shared segment. 

For each bridge, A, consider the set of addresses sending messages received on port 
x as F£. This is the set learned by the transparent bridging algorithm described above. 
This set changes as new addresses are learned, as old addresses expire, or as machines are 
physically moved to part of the network connected to a different port. F% is said to be 
complete if it contains a forwarding entry for each member of TV found off of that port. 

I will first describe the intuitively obvious way to use this information to determine 
the topology of the network. The basis of this algorithm is determining which nodes are 
directly connected. Two nodes are referred to as directly connected if there are no other 
nodes between them. In particular, if packets bridge A sends on port x are received by 
port y on bridge B without going through any other device, bridges A and B are directly 
connected via ports x and y. Those two bridges are connected by ports x and y if they find 
each other with those ports, but there may be other nodes in between. 

At a high-level, this algorithm begins by determining all entries in the FDBs, ensuring 
they are complete. It then selects a single bridge and determines the bridges that are directly 
connected to each port. The Ethernet topology is then filled in by traversal. At the heart 
of this code is the direct connection theorem, which is used to determine when two bridges 
are directly connected. 

Theorem 4.1 (Direct Connection Theorem) Assume that Ff and Fj are complete. Two 
bridges i and j are directly connected via the link connected to port x on i and port y on j 
if and only ifF* n F] = 0 and F* U Ff = N. 
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Proof «=: Assume that Ff D Fj = 0 and Ff U F/ = TV. For that to be true, Ff and 
Fj must be a partitioning of TV. The set N must contain at least i and j, which rejects the 
trivial solution. Because a bridge cannot hold its own forwarding entry, for Ff U Fj — N 
to hold, Ff must contain an entry for j and F? must contain an entry for i. Therefore, 
the bridges are connected through the links attached to ports x and y. For Ff D Fj = 0 
to hold, there can be no other nodes in between ix and jy, because if there were nodes in 
between they would be in the intersection because Ff and F? are complete and would both 
have entries for reaching the nodes in between. Therefore, i and j are directly connected if 
Ff n FJ = 0 and Ff U F] = N. 

=£►: First assume that i and j are directly connected. Recall that bridged Ethernet topol- 
ogy is defined to form a tree. Partition the tree across the link directly connecting the two 
bridges. Denote the partition containing i as N and the partition containing j as Nj. Due to 
the acyclic requirement of the Ethernet topology and the completeness requirement of the 
theorem, Ff = TV, and FJ = Nt. Because Nt and Nj are a partitioning of N, N n Nj = 0 
and Nil)Nj = N. Therefore, FfnFj = 0 andFfUFf = N. This proves that F?C\Fj = 0 
and Ff U Fj = Nifi and j are directly connected. ■ 

For a simple switched Ethernet, Theorem 4.1 is sufficient, but for many real networks, 
there are cases that are not addressed by it. One common cause of failure is a shared 
segment internal to the bridged topology. Shared segments can occur in two situations: 

1. A hub is used to connect two bridges with other hosts or bridges. Because hubs 
do not participate in the bridging algorithm, this creates a shared network segment 
between the bridges. The reality is that a properly designed network would never 
contain such a hub, but the real world does not guarantee that all networks will be 
properly designed. 

2. A bridge exists in the network that is not a member of B. This situation can occur 
either when the program is not informed of the bridge's existence or when SNMP 
access is denied to that bridge. Because SNMP protection generally consists of a 
simple allowed/denied list, this situation can easily occur and did, in fact, occur on a 
number of occasions during the development of the topology discovery system. 

Because Theorem 4.1 detects only direct connections and not bridges connected with 
shared segments, a new rule is required. To develop this rule, first let a(b) be the port of 
bridge a that address b is found off of. Let SB be the set of bridges connected to the shared 
segment. (Note that |5ß| > 1.) Let SE be the endpoints attached to the shared segment. 
The entire shared segment is denoted S = SB U SE- 

Theorem 4.2 (Shared Segment Theorem) S consists of a shared segment between the 
bridges in SB if and only ifVa £ 5ß, V&, c (E S : a(b) = a(c) and all forwarding databases 
are complete. 

In other words, on a shared segment, all bridges must find all members of the shared seg- 
ment on the same port. 

Proof <=: Assume that Va G 5ß, V&, c E S : a(b) = a(c), but SB are not connected 
with a shared segment. If 5 is not shared, then there exists a switch in SB that has elements 
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of S on different ports, by the definition of a shared segment. More formally, and by 
applying the completeness requirement, 3a G SB, 36, c G S : a(6) 7^ a(c). This contradicts 
the original assumption. Therefore the bridges are connected with a shared segment if 
Va e SB,Vb,c e S : a(b) = a(c). 

=>: Assume that the members of SB are connected via a shared segment containing 
SE- By definition of a shared segment, no bridges in SB may have elements of S on two 
different ports, otherwise, by the acyclicity requirement, the segment would be switched, 
rather than shared. Therefore, every member of SB has all members of S on the same port. 
Stated formally, Va G SB,Vb,c G S : a(b) = a{c) if the bridges are connected with a 
shared segment. ■ 

4.5.1 Implementation 

The first step of implementing this algorithm is acquiring complete FDBs from all bridges 
involved in the topology. This algorithm begins with a set of endpoints, E, consisting of all 
of the hosts on the Ethernet for which the topology is desired, as well as the routers used to 
connect this Ethernet to other networks. The set of bridges used in this network, B, must 
be known. The basic approach to determining this topology is to go through the members 
of B, querying for the ports to which they forward packets routed to members of E U B. 

Because bridges learn passively, each bridge in B must have seen a packet from each 
member of E U B to have an entry in its forwarding database for that node. To ensure that 
this table is complete, all members of E periodically ping all other members of E and B 
before and during the data collection. This guarantees that if a bridge is on the topology 
between any two members of E, it will have seen packets from both members and will 
have their entries in its forwarding database. Note that it is generally not possible for users 
to have routers or bridges send pings, but routers do respond to pings, so if all hosts are 
sending pings to a router, the router's replies to the pings will ensure that each bridge's 
FDB has an entry for that router. 

If a bridge is not used in forming the topology between the members of E, then all 
entries in its FDB for members of E will point to the same port. The algorithm drops these 
bridges from the network's topology because they are unused in the part of the network that 
is of interest in the query. 

After the complete FDBs are acquired, the algorithm calculates the topology. It begins 
with a single bridge and applies Theorem 4.1 to determine which other bridge is directly 
connected to each port. If it finds that at least one bridge is found off of a port, but no 
bridge is directly connected, then it applies Theorem 4.2 to determine which bridges are 
connected to the shared segment. 

The topology graph is traversed, applying this algorithm to each bridge in the topology, 
until all connections are resolved. 

4.5.2 Failures of the direct connection theorem 

While this approach works, there are several shortcomings. The most significant is the 
requirement that all members of E be running programs to send pings. This requirement 
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restricts the topology discovery to environments where all nodes support remote login and 
where the user has an account on each machine. If several members of E are routers or run 
Microsoft Windows, this requirement cannot easily be met. Even in other environments, 
rarely does a single person have accounts on all machines. While an individual could use 
this algorithm to determine the topology connecting their own machines, a shared database 
or a database for machines that are not always available would be impossible. Even if it 
is possible, the load and overhead of 1000 machines sending regular pings between each 
other would be significant. 

A second problem is that this algorithm requires every bridge's forwarding database to 
be complete. While obtaining complete FDBs may be possible when sending this many 
pings, various practical difficulties with bridges make it difficult to obtain such information 
reliably. 

The most significant difficulty with obtaining complete FDBs is that some bridges are 
connected via out-of-band ports. In other words, they communicate with other machines 
in the network through an interface not involved in forwarding packets. While out-of- 
band connections allow the network manager to contact the bridge even when the rest 
of the network is not functional, they also allow packets sent to the bridge to follow a 
different path to the bridge than one on which packets destined for endpoints would find 
the bridge. If a bridge is connected using an out-of-band port, the information provided for 
that address cannot be used to determine where the bridge is placed in the topology graph. 
This prevents the completeness requirements of the direct connection theorem and shared 
segment theorem from being met. 

More commonly, it is tremendously difficult to obtain complete sets for many bridges. 
The code used to implement this algorithm required several attempts to obtain complete 
sets, even for relatively small numbers of nodes. The fundamental problem of this approach 
is that it is not universally possible to obtain complete information about the network. 

As the network grows larger, the problem of obtaining complete forwarding sets be- 
comes even more challenging. In a large network with hundreds or thousands of machines, 
more and more of the machines will be down or unresponsive at a given time, whether do to 
hardware failure, software failure, being rebooted, or other problems associated with main- 
taining a large network. Capturing a complete, consistent picture in a real-world dynamic 
network environment is less and less likely in this type of dynamic environment. 

A workaround to this problem is used by Breitbart et al., who relax the completeness 
requirement to \F? U Fj\ > (1 — e)|iV| [20]. While the relaxed rule increases the chance 
of success, it still requires a tremendous amount of work to generate forwarding entries for 
most machines in all of the bridges in a large Ethernet. 

4.5.3   Related work 

The algorithm based on the direct connection theorem was developed by myself for Remos. 
A sketch of it was published in HPDC8 [75]. My description focused on the discovery of 
complete FDB entries for the bridges and largely ignored the details of the theorems that 
allowed the implementation. Independently, Breitbart et al., from Lucent Technologies, 
developed and published a description of an almost identical algorithm [20]. The princi- 
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Bridge Port Forwarding 
Entries 

A 1 X 
2 Y 
3 Z 

B 1 X 
2 Y,Z 

Figure 4.8: Example of two bridges for which contradictions can be used 
to determine the connections. 

pies utilized in their algorithm are essentially identical to those of mine, which I had not 
published. Their formal description of the algorithm, however, was much more complete 
than what I had written in the development of my algorithm. 

There are important differences between our techniques, however. The researchers 
from Lucent focused on Ethernet networks with multiple IP subnets and VLANs. They 
found that by extending the algorithm with information available from non-standard vendor 
MIBs, their algorithm could handle topology discovery on networks using VLANs. 

On the other hand, their algorithms do not address the problems of shared segments 
appearing between bridges, whereas I encountered a number of these shared segments and 
expanded my algorithm to support automatic discovery of shared segments. There were 
also a number of practical challenges that my code had to deal with to support the Ethernet 
LANs at CMU that were apparently not a problem for the networks at Lucent. These 
variances generally seem to correspond to the nonstandard aspects of the networks we each 
sought to support. 

Although there are important implementation and support differences between our dif- 
ferent algorithms, the fundamental techniques used by the algorithms remain the same. 

4.6    Topology discovery with incomplete knowledge 

Because of the difficulties associated with obtaining complete forwarding databases for 
entire Ethernet LANs, I decided to pursue an alternative approach to topology discovery. 
Rather than proceeding with the goal to prove that two nodes are directly connected, con- 
sider the approach of proving that bridge a is not connected to bx. Because this is a proof 
by contradiction, only a single counterexample is needed to demonstrate the contradiction. 

Figure 4.8 shows an example where contradictions can be used to determine how two 
bridges are connected. The motivating concept here is to pretend there is a connection 
between two specific ports of two bridges. Here I am referring to a simple connection, with 
other nodes possibly in between, not a direct connection. If all entries in the forwarding 
database are consistent with this connection, it can be made. If any one entry is inconsistent, 
then that connection is impossible. 
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Connection 
JY10IXL JYl0iXL 

JX1QI1L JY10IXL 

—<£££» JIlQEL 

^^ JYI^IXL 

Yes 

No 

Yes 

No 

Figure 4.9: Examples of valid and invalid connections between two bridges. 

Valid 

Figure 4.9 presents four examples of valid and invalid connections. The only situation 
where a contradiction can be found in making a connection is where the two bridges both 
have a forwarding entry for the same address on ports other than the connecting ports. In 
other words, they claim the same machine is in two different places on the network. In Fig- 
ure 4.9 this rule excludes the second and fourth examples, where the two bridges forward 
the same address in opposite directions. Anytime there is not directly conflicting forward- 
ing entries, the connection may be valid. Note that in the third example of Figure 4.9, 
node Y is between bridges A and B. Because this rule establishes only a connection and 
not a direct connection, this is perfectly valid. 

Figure 4.10 shows how contradictions can be used to determine the only valid connec- 
tion between the bridges in Figure 4.8. All six possible connections between the bridges 
are shown. In five of the six connections, a contradiction of the two bridges forwarding the 
same address in opposite directions was found. Only the valid connection is left. 

The most important observation about the application of this simple rule is that there 
is no complete knowledge requirement. Instead of requiring complete knowledge, there 
is merely the minimal requirement of having enough information to rule out all but one 
possible connection. I will describe and prove what this minimum knowledge requirement 
is. In the example in Figure 4.10, the entries for these three addresses meet the minimum 
requirement. There may be many other nodes in the network, and there may be entries 
for many other nodes on one or both of bridges A and B, but as long as the minimum 
information is captured as it is in this example, the correct connection will be determined. 

To simplify the presentation of the algorithm, I will first introduce additional notation. 
Consider the network shown in Figure 4.11. In this graph, the bridges in the network 
are shown annotated with the addresses they learn through the forwarding algorithm, the 
sets Ff of addresses forwarded by each port. Figure 4.12 shows the addresses that are 
forwarded through each port, in other words, the addresses that are on other ports, for 
which the bridge will forward packets through itself. The addresses forwarded through 
each port are, in a sense, the complement of Ff and are denoted Tf. 

After determining the set of addresses forwarded through each port, shown in Fig- 
ure 4.12, it is simple to apply this information to determine the ports that connect two 
bridges. To see if ports x and y of bridges a and b are connected, determine Tf and Tf. 
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Ports 
A    B 

1      1 
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Figure 4.10: How contradictions can be used to eliminate impossible con- 
nections from the bridges in Figure 4.8. 
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u-eir^W     {1~7 

; 1-3,5-8} 

o 
{8} 

Figure 4.11: The topology of a portion of a bridged Ethernet. The ports 
on the bridges are annotated with the addressed learned in their forward- 
ing databases, denoted Ft

x. This figure illustrates complete forwarding 
databases. 

{1-7} 

Figure 4.12: The same network as Figure 4.11. In this figure, the ports on 
each bridge are annotated with the addresses forwarded through that port, 
denoted 27. 
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The intersection of these through sets, T*C\Tb
y represents the addresses that the two bridges 

forward in different directions. If there are any addresses in common, then the ports cannot 
be connected because a single node cannot be in two different directions on an Ethernet, 
which is required to be acyclic. If the intersection is null, they are connected. 

By simple iteration, it is possible to map each bridge to the port it appears off of every 
other bridge. Applying this technique to each bridge allows the complete topology of the 
network to be determined. 

This approach has several advantages to the previous approach: 

• Rather than relying only on information about one port, information from all ports 
is combined for each mapping question. This is especially helpful for ports with 
few machines connected to them, because it allows data to be aggregated without 
requiring that it be complete. 

• Incomplete information is tolerated much more easily. 

• Shared segments are naturally determined from the primary theorem, rather than 
relying on a special case to resolve conflicts when the direct connection theorem 
fails. 

• The theorem offers positive rejection: if insufficient information is available to per- 
form a mapping, that error is detectable and distinguishable from a case where a 
mapping is performed with incomplete, although accurate, data. 

4.6.1    Rigorous presentation 

Theorem 4.3 (Simple Connection Theorem) Let a,b e B. Suppose there exists exactly 
one pair of ports ax and by such that T* D Tg = 0. Then ax and by are connected. Further- 
more, ifax and by are connected, then T* C\ Tb = 0. 

Remark: Note that ax and by being connected does not imply that T* n T% = 0 for only 
one pair x and y. See Figure 4.13 for an example. 

Proof =^>: Assume that ax and by are connected. Partition the network into three parti- 
tions, let Ns be the partition between ax and by, let Na be the partition containing a, and 
let Nb be the partition containing b. T* C Na and Tb

y C Nb. Because Na and Nb are a 
partitioning of N, T* n Tb

y = 0. Therefore, T% n Tb
y = 0 if ax and by are connected. 

4=: Assume that T*C\Tb
y = 0 for only one pair x and y, but ax and by are not connected. 

Because a and b belong to a connected Ethernet, they must be connected by some pair of 
ports. Let at and bj be the true ports connecting the bridges. From the first half of the proof, 
Ti n Tl' = 0. However, this contradicts the assumption that the intersection is null for only 
one pair of ports. Therefore, by contradiction, ax and by are connected if T£ n Tjf = 0 for 
only one pair x and y. B 

The final portion of Theorem 4.3, that the intersection is null for only one pair x and 
y, is the minimum knowledge requirement. It serves to prevent trivial solutions to T* n 
Tb

y = 0 that exist only because the forwarding databases have insufficient information or 
because the network topology is structurally indeterminate. Consider the network shown in 
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Figure 4.13: In this network, the order of the two bridges cannot be deter- 
mined because there is no information available using only two hosts. 

Figure 4.13. These two bridges can be arranged in either order because the knowledge they 
give is insufficient to determine ordering between themselves using only the forwarding 
entries for the hosts shown. 

The minimum knowledge requirement can be met by any pair of bridges that meet the 
following rule: 

Lemma 4.4 (Minimum Knowledge Requirement) The ports x and y that connect a and 
b are uniquely determined if and only if any one of these conditions is met: 

1. Each bridge has an entiy for the other's address in its FDB; or 

2. Bridge a has an entry for b in FQ
X and 3k ^ x : Fb D F% ^ 0; or 

3. 3i, j, i^j: (F* n Fl
b + 0 A F* D F3

h ^ 0), and 3k ^ x : Fb
y D F* ^ 0. 

Proof The first condition is trivial—if each bridge has an entry for the other in their 
FDBs, then the entries directly indicate which ports are used to connect the bridges. If that 
option is not available, one of the other two must be met. 

For the second condition, port x is uniquely determined to be the port of a connected to 
b because of the explicit FDB entry. Port y on b is uniquely determined because there is an 
entry shared between by and a port on a other than ax. If a connection is tried using any port 
other than y, these two entries will cause a contradiction by pointing in different directions 
for the same entry. This is the important condition required by 3k ^ x : Fb D F% ^ 0. 

Proving the second half of rule two formally: <=: Assume 3k ^ x : Fb D F% ^ 0. Let 
c 6 Fj9 fl Fa

fc. Because k ^ x, c G TQ
a'. Also, V7 ^ y : c G Tfc'. Because c is in both sets, 

Tl
b n T* ^ 0. Therefore, if 3k ^ x : Fb

v n FQ
fc ^ 0, y is uniquely defined. 

=$>: Assume y is uniquely defined, but Vfc ^ i : if fl F£ = 0. Because x and y are 
connected, Tb

y n T% = 0. By definition of through sets, VZ ^ j/, Vfc ^ x : Fb' n Fa
fc = 0. 

Combined with the initial assumption, VZ, Wk ^ x : Fl C\F* = 0. Again by the definition of 
through sets, VZ : Tb D T* = 0. This contradicts the assumption that y is uniquely defined. 
Therefore if y is uniquely defined, 3k ^ x : Fb D F£ ^ 0. 

The third, and fully general condition is an extension of the logic used for condition 
two to using intersections to make the unique determination of both ports x and y. The 
third case requires that F£ must have members also found in two ports of 6, denoted Fb 

and F^. This condition is sufficient to uniquely determine x. To see why an entry must 
be shared with two ports, whereas for condition two, a shared entry with only one port 
was required, consider the case where there is an entry shared between port ax and port 6$, 
but no entries shared with any port other than b{. In this case, ax can be connected to any 
port on b without creating a conflict. However, 6, can also be connected to any port on a 
without creating a conflict, as the shared entry will simply be indicated to forward through 
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Forwarding Sets 
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Figure 4.14: Two network graphs are shown with forwarding and through 
sets indicated. Network (a), as seen in Figure 4.13 does not provide suf- 
ficient information to meet the minimum knowledge requirement. Net- 
work (b), however, with the addition of one additional host, meets that re- 
quirement. 

a to port ax. So this single shared entry does not uniquely define x. Now consider the case 
required in the third condition, where there is also a shared entry with bj. In this case, if ax 

is connected to b, the connection is valid. However, if any port of a other than ax is used 
for the connection, a conflict is created. If 6; is connected to a port on a other than ax, a 
conflict will be created with the entry shared with bj, because they will be forwarding the 
same address in different directions. Likewise, a conflict will be created if bj is connected 
to a port other than ax. If a port on b other than 6j or bj is connected to a port other than ax, 
then the entries from both fej and bj will create a conflict. Therefore, we see that these two 
shared entries uniquely determine ax as the port used to connect a to b. 

Once x is uniquely determined, y is determined with the same rule as used for condition 
two. 

As a further example, consider the graphical illustration of an indeterminate network 
shown in Figure 4.14. In network (a), there is not a unique solution to the mapping problem. 
The bridges share two entries, but they are symmetric and can be placed in either order. 
Network (b), however, resolves the indeterminism. By adding a second machine off of one 
of the bridges which is shared in both bridges' FDBs, the network is uniquely determined. 
This second machine gives a shared entries with two of 6's ports. It is no longer possible to 
reorder these two bridges because the only port on the left bridge that can be connected to 
the right one is the one with both entries. Any other connection will cause a contradiction. 

The formal proof of condition three begins by proving that Bi,j,i ^ j : (F£ D F£ ^ 
0 A F* n F°h 7^ 0) uniquely determines x. 
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<=: Assume 3i,j,i ^ j : (FQ
X n F£ ^ 0 A F* n Ff ^ 0). This implies that \/z : 

F* n T{; ^ 0 because either F6* or Fb
j will be in Tg. Accordingly, VZ ^ x, Wz : Tl

a D 7£ ^ 0. 
Therefore, a; is uniquely determined if F* n F^ 0 and F* n F/ ^ 0. 

=^>: Assume that a; is uniquely determined, but that Vi ^ j : F^nFjj = 0VF(fnF&
J = 0. 

In other words, there is at most one i such that F% D F6
J ^ 0. Consider two cases: 

First, that there is no set Fl
b such that F% n i7^ ^ 0.  We know that T* n Fj 

0. Combining these two, VZ, Vi : Fj n F&
2 = 0. Therefore, there are no common 

members, which contradicts the initial assumption that x is uniquely determined. 

• The second case is that there exists only one i such that F* D F6
J ^ 0. Note that 

network (a) in Figure 4.14 meets this condition, but is indeterminate. By example, 
this is a contradiction. 

Therefore, if £ is uniquely determined, 3i,j, i ^ j : (F* n F^ ^ 0 A F* C\ F£ ^ 0). 
Once z is uniquely determined, the proof of rule 2 proves y is uniquely determined if 

and only if 3k ^ x : F6
y n F* ^0. ■ 

Therefore, it has been shown that Lemma 4.4 is truly the minimum requirement for 
Theorem 4.3 to be able to determine the connection between two bridges in a network. 

4.6.2    Practicality 

The next question to be asked is whether Lemma 4.4 is a realistic expectation for bridged 
Ethernet networks to meet. After all, the motivation for pursuing this technique is that it is 
much easier to satisfy the minimum knowledge requirement than to require the FDBs to be 
complete. 

Consider the four snapshots of two bridges shown in Figure 4.15. Imagine that the 
real position of these two bridges has bridge A internal to the topology and bridge B posi- 
tioned as a leaf bridge, connecting only to one other bridge with the remainder of its ports 
connected to endpoints. 

In Figure 4.15(a), only one host off of the lower bridge is shared. This is obviously 
indeterminate. In Figure 4.15(b) the new address 2 might correspond to the querying node 
sending pings to address 1 while probing the FDBs. However, for the same reasons as 
Figure 4.13, this mapping is still indeterminate. 

Now, suppose that node 1 has communicated with some other host on the network, for 
instance a nameserver. If that node is also found on any port on the upper bridge other 
than the port with 2 in its forwarding set, such as in Figure 4.15(c), then the mapping is 
determinate. In many cases, it is possible to force a machine to contact a nameserver by 
connecting to its FTP daemon, for instance. 

In most cases, networks aren't designed with only one endpoint connected to a bridge. 
There is no reason to purchase a bridge in that case. Almost all bridges have 4, 16, 24, 
or even more ports used for connections to machines. A bridge with just two ports used 
will satisfy Lemma 4.4. Consider Figure 4.15(d). The only entries in the FDBs are for 
endpoints on two different ports of bridge B and for the querying machine sending them 
pings. Networks (c) and (d) are two minimal examples—a single machine on a bridge that 
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(a) (b) 

(c) 

Figure 4.15: These snapshots of two bridges within a network demonstrate 
different examples of indeterminate and determinate FDBs. The forwarding 
sets are shown for each port, (a) and (b) give examples of indeterminate 
networks, (c) and (d) are both determinate, although for different reasons. 
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has talked to more than one other machine (host, server, or router) or a bridge connected 
to two machines. Practically every part of an Ethernet will meet one of these criteria. 
However, because bridges are generally only installed in a network to be used, which means 
there are machines divided among several ports, most components will provide information 
well beyond the minimal requirements. 

4.6.3    Specialization for traversal 

An important specialization of Lemma 4.4 can be used in most cases. If the network's 
topology is determined by traversal from a designated root, then the first mapping step 
resolves the ports connecting each bridge to the root bridge. From that point in the al- 
gorithm, the "root port" of each bridge is fixed. This knowledge can be exploited by the 
algorithm. In fact, being able to fix the root port of a bridge satisfies the first half of rule 3 
in Lemma 4.4. This reduces the requirement for subsequent mappings to only one entry 
shared between the connecting port and another port on the child bridge. 

This specialization is easy to exploit. The root is picked to maximize the chances that 
it meets the minimum knowledge requirement. The only complexity in the traversal is that 
each bridge must be tested to see if it is the next hop in the traversal. Determining which 
bridge is the next hop is easy, because performing the mapping with an incorrect bridge 
will either indicate that there are bridges between itself and the root bridge (these bridges 
will be connected to the incorrect choice's root port), or it will actually cause a conflict 
because a bridge will have to be connected to it on a port other than its root port, indicating 
that this isn't the true topology. 

In summary, the minimum knowledge requirement is very easy to satisfy. Any bridge 
that is installed and used to connect more than one machine will meet the requirement. 
Furthermore, even if the topology has little information, once the root port has been deter- 
mined, only one entry is needed to meet the requirement. 

4.7    Implementation 

The actual implementation differs somewhat from the described theorems only in that it 
tries to provide solutions in situations where there is not enough information to solve the 
mapping problem deterministically and that it handles mapping endpoints to the bridge 
topology. 

4.7.1    Preparation 

The algorithm begins with a set of bridges, B, and a set of endpoints, E. The bridges 
and endpoints must all be within the same bridged Ethernet. In many networks, this can 
be determined by IP address and netmask. In proxy-routed networks, such as that used at 
CMU, only traceroute can determine whether an address is on the local bridged Ethernet 
or across a router. Some networks may actually involve multiple IP subnets on the same 
bridged network. This algorithm does not make use of IP addresses at any point, so it 

113 



4.7 Implementation 114 

will not be affected by the presence of multiple IP subnets on the same bridged Ethernet, 
although detecting this situation automatically requires analysis of the router's interface 
and routing table. 

Each bridge is queried with SNMP to retrieve its interface table and to build data struc- 
tures needed to determine how it forwards data. To learn the MAC address of bridges and 
endpoints, the node running the algorithm pings each node. Sending that ping forces the 
querying node to learn the target's MAC address, which is recorded for use in analyzing 
the topology. 

This initial phase of the operation weeds out members of both sets that are not respond- 
ing properly. Bridges and hosts that appear to be down are dropped from the sets, and 
bridges that do not report a forwarding database are transferred to the endpoints set. 

4.7.2   Learning 

The next step in topology discovery is learning the forwarding database entries for each 
bridge. This is accomplished by walking the forwarding database table to download all 
of the entries. SNMP's GETNEXT command is issued to retrieve the first entry from the 
database. Repeated GETNEXT commands, indexed from the previous response, are used 
to traverse all entries in the database. 

While the forwarding databases are being walked, the querying host is also pinging all 
members of the bridge and endpoint sets. This ensures that, minimally, all machines have 
entries in the FDBs of the bridges on the path between the querying host and the target 
machine. 

Some bridges preserve expired entries or entries for themselves in the database. The 
self-referencing entries are removed. The expired entries may be used as a source of addi- 
tional information. However, in the event that a machine has been moved and the bridge has 
not learned its new location, but other bridges have, this expired entry will generate con- 
flicts when mapping the network. For the experiments described here, no expired entries 
were used—more than enough information was available through the current entries. 

While many bridges arrange their forwarding database in ascending order, others pro- 
vide it in an unsorted order—presumably the ordering of a hashtable. This has the unfor- 
tunate side effect that it is impossible to reliably walk the entire database. Because the 
entries in the database change continuously, walking the unsorted list may skip over entries 
or find loops. Sometimes only a few entries are received. Other times, the code to walk the 
database finds loops and fetches each entry many times. Currently, this difficulty is solved 
by aborting when a loop is followed too many times and making queries for each MAC 
address known in the bridge and endpoint sets, but not found while walking the table. This 
code could also be triggered if the walk completes, but the database was not ordered, and 
thus possibly hashed and shortened, but this has not been done to this point. 

After the bridges' FDBs have been walked, an option for extra completeness is to go 
over each retrieved FDB and send queries to the bridge asking explicitly about any MAC 
belonging to a bridge or endpoint that is in the sets but not present in the database. Experi- 
ence has shown that this option generally will not produce significantly more information. 
However, during the development of this algorithm, bridges have been found that do not 
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support sequential walks of their database or that do not update the information available 
through the walk.3 In such cases, other methods are necessary to obtain sufficient informa- 
tion from the bridges. 

4.7.3   Deriving the topology 

Once the databases have been loaded, the remainder of topology discovery is done inter- 
nally. The first step of this procedure is to remove any unused bridges. A bridge that has 
been attached to the network but to which no host has been attached cannot be placed in 
the network by the mapping rules. Although it can be placed using entries for its own ad- 
dress, in the case where out-of-band connections are being used, this information may not 
be useful. Therefore, these bridges are dropped. 

The algorithm performs the topology discovery by a traversal from the root bridge. The 
initial challenge is the selection of the best root. A heuristic is used that is designed to 
minimize the chances that a mapping between a pair of bridges may not meet the minimum 
knowledge requirement. The heuristic is therefore chosen to favor a bridge with entries 
distributed across many ports, rather than just one. Specifically, the bridge with the most 
FDB entries not mapping to the port with the most entries is selected. This heuristic was 
chosen because most bridges in the topology will have the majority of their entries mapped 
to their root port and because, due to various aspects of the learning phase, the root bridge 
may not have as many total entries as the leaf bridges. By excluding the entries from 
the most-used port, the algorithm tries to find a bridge with a large number of machines 
distributed across all its ports, thus meeting the minimum knowledge requirement. 

Once the root has been selected, the remaining bridges are mapped to the port of the root 
bridge on which they appear. This algorithm forms the core of the topology discovery code. 
The only difference between the initial call of this algorithm and subsequent calls is that 
on the first call no bridge will have its root port selected, whereas on almost all subsequent 
calls that port will have been determined. The mapping algorithm will be described in 
detail below. 

After mapping each bridge to one of the ports of the root bridge, the algorithm begins 
a simple traversal of the topology. For each port of the root bridge, the algorithm must 
determine which of the bridges connected to that port is the next hop, which is directly 
connected to that port. The algorithm attempts to map each child bridge as the next hop. 
A candidate is selected, and the algorithm maps the other bridges assigned to the root's 
port to their connections on the candidate. The correct next hop will have no other bridges 
connected to its root port. If any other bridges appear connected to the candidate's root 
port, then the candidate is not the next hop because there is a bridge in between the root 
bridge and the candidate. (Note that shared segments complicate the algorithm slightly and 
are discussed below.) 

After determining the topology between the bridges, the endpoints are assigned to the 
topology. This is primarily a simple matter of observing the port on which the endpoint's 
MAC address appears that is not attached to another bridge. However, in cases where there 

3This problem was believed to be caused by a bug in the bridge's OS and was solved by upgrading the 
bridge's software. 
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is insufficient information, the topology may need to be traversed to determine the final 
location of the host. This algorithm is discussed below. 

4.7.4   Mapping algorithm 

The core component of the topology discovery algorithm is the mapping algorithm. The 
mapping code allows for the explicit bridge-to-bridge forwarding information to be used 
or ignored. Normally it is useful, but if bridges are connected via out-of-band ports, it 
cannot be used. First, the procedure used to map nodes to ports using intersections will be 
described. Then the variations in the method for use of the explicit forwarding information 
will be described. 

The basic approach to solving this problem is to calculate T% n T% for each possible x 
and y. If the root port of b has been determined, the calculation requires only iteration over 
x. When a null intersection is found, that port assignment is returned as the correct match. 
If no match is found, an error is returned. If the minimum knowledge requiremet is met, 
this error should never happen, but in practice it can happen when an incorrect root is being 
checked and the bridge in question is very far away in the topology and not on the route 
between any pair of machines currently communicating with each other. In this situation 
returning an error is appropriate, because it will be passed up to a higher level where a new 
next root will be chosen. 

The first special case is where the minimum knowledge requirement is not met. In this 
case, there are two possibilities. More information can be acquired, or the best can be done 
with what information is available. One method of acquiring more information would be 
to do the direct queries, if they hadn't been done before, in an attempt to complete the 
forwarding information. Currently, this approach is not taken automatically. The approach 
that is taken is to merely return that the child bridge is off of the root port of the root bridge. 
This has the effect that, if these two bridges are selected for the next root, a virtual switch 
will be inserted, connecting both of them to the previous root's port. While not necessarily 
the correct topology, this has the virtue of providing a solution that is consistent with all of 
the (inadequate) information that is available from the bridges. 

A second precaution taken is that if the child's root port has not yet been determined, no 
requirement is made that it be found. Therefore, if the port of the root bridge on which the 
child is found is uniquely determined, but not vice versa, the mapping will still continue. At 
some point, either the child will be mapped off of a bridge for which it meets the minimum 
knowledge requirement, or an error will be generated. 

Finally, the mapping routines also support a "named-only" mode, where only MACs 
belonging to endpoints with known names, i.e. E, are considered. In this case, MACs 
not belonging to E are removed from consideration when checking intersections. This 
option is used automatically if no other match can be found. The presence of out-of-band 
connections and broadcast addresses is believed to account for the need for this requirement 
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4.7.5 Virtual switches 

In Section 4.51 described two situations where a direct connection could not be established 
between two bridges in an otherwise complete network. The principal challenge in these 
situations is the creation of a shared Ethernet segment, rather than the modern point-to- 
point connections. These situations are: 

1. A hub is used to connect two bridges with other hosts or bridges. Because hubs 
do not participate in the bridging algorithm, this creates a shared network segment 
between the bridges. 

2. A bridge exists that the algorithm either was not informed above, or to which SNMP 
access is denied. Because SNMP security generally consists of a simple list of al- 
lowed or denied IP addresses, this situation can easily occur. 

The direct connection theorem required a special case to handle these possibilities. 
However, using the simple connection theorem, no special case is required. This is because 
the theorem is used to map bridges to the port to which they are connected, rather than 
finding direct connections. In the course of the traversal, at each step the algorithm selects 
the next bridge in the tree. In the ideal case, a next hop will be found and will have no 
other bridges along its root port, therefore it is directly connected to the previous root. A 
virtual switch corresponding to one of the above conditions occurs when no single bridge 
is found to be the next hop. Instead, all bridges map at least one other bridge along their 
root ports, without causing any conflicts that would indicate that the previous root choice 
was incorrect. 

To determine which bridges are connected directly to the virtual switch and which are 
their children, simple take the intersection of the nodes mapped to all of the bridges' root 
ports. This intersection will reveal the set of bridges that all bridges on this branch of the 
tree believe are on the link they use to connect to the previous root, and thus the set of 
bridges that must be connected to the virtual switch. The remaining bridges will exist only 
on the mapping belonging to one of the bridges on the shared segment, because they were 
mapped to the root port of the other bridges involved in the virtual switch, but excluded by 
the intersection. 

The elegance of this solution is one of the appealing aspects of this technique. Rather 
than requiring a special case, virtual switches are naturally determined using the base algo- 
rithm. 

4.7.6 Endpoint mapping 

The final stage of the topology discovery algorithm is to map the endpoints to their locations 
on the topology. In most cases, this is very simple. The bridge to which the node is attached 
almost always had a current entry for each host attached to it in its forwarding database 
during the learning phase. If an endpoint's address is found on a bridge on a port to which 
no other bridge is attached, i.e. that port is a leaf in the topology, then that is the port to 
which the endpoint is attached. This handles almost all cases of endpoint mapping. 
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In a few cases, however, either the bridge happened to not return an entry for an end- 
point directly connected to it when queried, or the endpoint is located on a shared segment 
between bridges. In this case, the graph is traversed from the root, looking for an entry for 
that endpoint. The goal of this algorithm is to prune away the parts of the bridge topology 
where the endpoint cannot be. As soon as an FDB entry for that endpoint is found, all 
bridges off of other ports of that bridge are eliminated. A traversal is begun from the port 
where the forwarding entry was found. Whenever a new forwarding entry is found, the 
bridges off of other ports are again pruned (in most cases including the bridge followed to 
this new node). Eventually, the algorithm either restricts the location of the endpoint to a 
link between two bridges, in which case the endpoint exists on a shared segment between 
the two bridges and a virtual switch is added to facilitate this location, or the endpoint is 
restricted to a set of bridges. In many cases, the solution turns out to contain one bridge, 
which is the bridge to which the node is actually connected, but which did not report an 
entry when queried. Here, the node is attached to a virtual switch at the point where the 
last information was provided. However, the code also queries the bridge for a forwarding 
entry for that endpoint, and this specific query has almost always resolved the location of 
the endpoint to a specific port on the second attempt to determine it. 

4.7.7    Cleaning up the topology 

The final step in producing a usable topology is to propagate the location of all nodes to all 
bridges in the topology. This ensures that it is simple to follow paths across the topology, 
even when the FDB entries for that node weren't present. When finished, a complete repre- 
sentation of the topology is available, with the information needed for automatic processing 
by applications. 

4.8    Results 
The topology discovery algorithm has been implemented as stand-alone code and as a 
module for use with the Remos system. The code was tested by running it on the extremely 
large Ethernet operated by the CMU CS department. With almost 2000 hosts and almost 
50 bridges, it is doubtlessly one of the larger bridged networks in the world. 

By far, the most time-consuming portion of the code is downloading the forwarding 
databases, which is simply a matter of the time it takes for the SNMP implementations 
on the querying machine and bridges to complete the data exchange. For this network, the 
time for these queries was approximately 45 minutes. The actually topology was calculated 
in less than 5 minutes. 

The topology discovery algorithm has been run on several smaller networks. Although 
a few small changes were needed to support various incompatibilities in the SNMP support 
of the Ethernet bridges, the fundamental algorithm has performed flawlessly in all of the 
environments in which it has been tested. 

Figure 4.16 shows the bridge topology discovered in the CS Department network. This 
topology was verified by the network manager as correct to the extent possible. There is 

118 



4.8 Results 119 

« u a 
C/3 

■W c 
o 
a 
-a c <u 
_ 
ro 
00 
—H 

d o 
o 
(N 

ON 
<N 

>> 
C3 

S 
C o 

4-J 

u c 
kH « 

43 

W 
X) 

<i; 
W) 

T3 
•a 
£> 
>. 
I-H 
C3 

s 
;-i a. 

■4—1 

C <u 
E 

4—» 

OH 
0) 

4-J 

P 13 
Cfl >-. 
U £ 
P TJ 

S 4-1 
4-1 

u '3 
Ü n 
5 T3 
tl—< c 
o c3 

O 

>> 
O 

O 
OH 

O 
OH o 

4—> 

r/i 

*c 43 
4-< 

iH £3 
rt O 
a» T3 u <U 
3 
en 

4-» 

to o 

119 



4.9 Practical considerations 120 

no actual record of where hosts are attached to the network, but we discovered no errors in 
the placement of the machines we verified. 

4.9   Practical considerations 

My research has demonstrated that SNMP, already supported by almost all of the current 
networking infrastructure, is sufficient for obtaining the information needed to determine 
topology and predict performance directly from the most commonly-used networks used 
today. Although it is not an ideal interface for this purpose, it allows the network-based ap- 
proach to performance prediction to be explored and utilized on existing networks. Demon- 
strating the value of this approach by using it in real systems and applications should result 
in the development of more appropriate interfaces for network components. However, both 
administrative and technical considerations must be addressed to provide a better interface 
for performance prediction purposes. 

The administrative complication is primarily accessibility. Typically, SNMP access is 
only allowed from machines on the local network, and it is usually impossible to make 
SNMP queries to network components on an ISP's network. Security and privacy are the 
two primary reasons for this. Security is actually a technical concern; because the designers 
of SNMP were unable to agree on a workable security protocol, there is little security 
in current implementations, therefore a minimal security level is achieved by restricting 
access to local hosts. ISP's are generally concerned about privacy, not wishing to divulge 
information about the congestion levels of their services. Furthermore, because SNMP 
queries can be expensive, no one wants to open their network up to excessive load or 
even denial-of-service attacks with SNMP. We are currently pursuing combining network- 
based data with benchmark-based data to provide predictions in environments where direct 
network queries are only available for portions of the network. 

Although RFCs describe the behavior of SNMP implementations, the standards and 
their implementations have not resulted in consistent interfaces between different manu- 
facturers. For instance, the forwarding databases in Ethernet bridges are particularly trou- 
blesome. Some allow queries to be made for the forwarding port of a specific address. 
Other implementations are designed only for traversal, requiring the same query to be re- 
formulated as a query for the subsequent entry from the numerically preceding address. 
Furthermore, some bridges remove the forwarding database if queries are made to it too 
rapidly, apparently as a security measure. 

Additional networking technologies make topology discovery more complex. For in- 
stance, it is possible to run separate IP subnets on the same Ethernet. Although my al- 
gorithm and implementation correctly determine the topology in this situation, Remos is 
not currently able to recognize this configuration and provide accurate information to the 
application. Additionally, many network administrators are configuring their networks us- 
ing VLAN technology. Although the same principals apply to discovering topology within 
VLANs, additional code is required to determine where the VLANs are sharing the same 
physical network connections. Much of the needed information appears to be available 
through standard MIBs, but I have not implemented this support in my software.  Ad- 
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ditional networking technologies will doubtlessly provide further challenges to topology 
discovery. 

One of the motivations for this work is the lack of standardization between the various 
bridge vendors on support for topology discovery. While both Cisco and Intel, two major 
bridge vendors, support topology discovery, they use incompatible proprietary techniques 
for doing so. In September 2000, the IETF adopted the Physical Topology MIB as a stan- 
dard MIB [14]. While an encouraging development, the earlier components of the RFC 
that specified a protocol to be used for topology discovery were removed from this RFC, 
and the RFC does not impose an Internet standard, merely reserves this portion of the MIB 
space. These shortcomings do not indicate a promising situation for the quick arrival of 
automatic topology discovery as a portable standard in commodity components. 

4.10    Conclusions 

The most important advantage of providing low-level network information to applications 
is the inclusion of the network's topology. Extraction of routing information from IP routed 
networks, ATM, and Myrinet is simple because the information is directly available. How- 
ever, topology discovery on bridged Ethernet is quite challenging due to the transparent 
nature of the bridging algorithm. The bridging algorithm is one of the factors that has 
made Ethernet the most common LAN network, and applications must receive information 
about Ethernet topology to properly adapt to these networks. 

The simple connection theorem presented here allows the topology of a bridged Eth- 
ernet to be determined even in the presence of incomplete knowledge. In particular, any 
bridge that has nodes detected off of two ports will be placed in the network topology. Be- 
cause bridges are only used when multiple machines are to be connected to the network, 
this implies that nearly all Ethernet topologies will be detectable using these algorithms. 

The significance of the simple connection theorem for bridge topology discovery is 
simply that it allows discovery to be performed where algorithms based on the direct con- 
nection theorem cannot be used. In the CS department network evaluated here, almost 
2000 machines may be active at any given time. It is impossible to send pings from all 
machines, and the machines are rarely all connected for the continuous 45 minutes that 
would be required to collect complete forwarding databases from all bridges, if that would 
even be possible in a network this large. The simple connection theorem enables topology 
discovery because it can derive the topology with only a small amount of information from 
each part of the network. 

The impact of topology information on parallel performance prediction is very impor- 
tant. Using topology, it is possible to detect bottleneck links without running an application. 
This is an important benefit, because bottlenecks induced by poorly planned topology are 
one of the largest differences between well-planned and poorly-planned distributed sys- 
tems. Even without the network utilization techniques described in other chapters, topol- 
ogy prediction allows applications to detect the quality of the network they are using. The 
ability to detect and adapt to the difference between a Beowulf-class system and a collec- 
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tion of machines spread across different LANs is key in developing software to support 
network-nieve users on complex distributed systems. 

Another possible use for network topology is planning benchmarks for network per- 
formance prediction. Although I have focused on techniques other than benchmarks for 
performance prediction, having accurate topology information allows benchmarks to be 
planned for maximum usefulness and minimal invasiveness. Scaling arguments aside, a 
combination of topology information, network-based utilization measurements, and selec- 
tive benchmarks to measure the performance of congested portions of the network may 
provide the most accurate and useful predictions of network performance for applications. 
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Chapter 5 

Conclusions 

5.1    Summary 

Access to accurate network information is essential to the performance of adaptive dis- 
tributed applications. Most existing systems providing network information do so utilizing 
active benchmarks, or probes, in which data is sent across the network to determine the 
performance a future application will receive. 

A number of projects have demonstrated that active benchmarking provides sufficient 
information for many applications, but there are still a number of shortcomings. 

Topology I have presented several applications and common operations where the topol- 
ogy available through low-level network information can be used to enhance appli- 
cations' performance running in distributed environments. The common operations 
include collective communication, cluster selection, and network performance met- 
rics. Each of these examples are used for a wide variety of applications that ultimately 
benefit from access to this low-level information. Any application that plans its own 
communication pattern, selects clusters for multi-phased applications, or performs 
other similar activities can make direct use of topology information. Without this 
information, it is impossible to determine how bandwidth will be shared when mul- 
tiple messages are sent simultaneously across the network, a key performance issue 
for many parallel applications. 

Scalability Because only pairwise information is recorded by benchmarking, these ap- 
proaches scale poorly if measurements are to be taken between all possible pairs 
of machines, requiring sacrifices to be made in either completeness or frequency of 
measurement. These costs can be reduced by collecting the data in a hierarchical 
fashion, but even a small LAN may contain too many machines to collect informa- 
tion about effectively. This restriction prevents benchmarking from being used in 
all environments. Without this range of functionality, benchmarking will never be 
able to support parallel applications with the same portability provided by current 
programming interfaces. 

Invasiveness The third drawback to using application-level measurements is their inva- 
siveness.  They naturally consume the resource they are trying to measure.   This 
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becomes a significant problem when combined with the scalability problems already 
discussed. 

The shortcomings of the application-based and benchmark-based measurement ap- 
proaches motivate using low-level network information to meet the network-awareness 
requirements of the applications. The low-level information provides detailed topology 
information unavailable through the high-level approaches. By also using the low-level 
measurements to predict applications' end-to-end performance, the whole range of network 
information required by applications can be obtained using a scalable and non-invasive 
technique. 

Remos has been designed to provide applications with both the low-level and high- 
level network information they require to adapt to the network. Remos provides a uniform 
interface so that portable network-aware applications can be developed independently of 
any particular network architecture. 

The challenges in defining the Remos interface are network heterogeneity, diversity in 
traffic requirements, variability of the information, and resource sharing in the network. 
The Remos API is the result of an effort to present the network at as high a level of abstrac- 
tion as possible, while maintaining the important low-level information needed by many 
applications. Remos supports both high-level flow-based queries and low-level topology 
queries. This combination allows Remos to meet the needs of the great majority of applica- 
tions, including application classes that cannot be addressed with the information provided 
only through benchmarks. 

To provide the information provided through the Remos interface, SNMP is used to 
obtain measurements directly from the network components. I have demonstrated that it 
is possible to provide accurate predictions of application-level performance using this low- 
level information. The current technique would have to be modified to be deployed at sites 
scattered across the Internet, but the accuracy of the predictions has been verified using both 
synthetic and real traces representing typical traffic found on both wide-area and local-area 
networks. These results give great promise for future deployment of this technique across 
a variety of environments. 

Using SNMP, it is also possible to discover the topology of today's commonly used 
networks. Extraction of routing information from IP routed networks, ATM, and Myrinet 
is simple because the information is directly available. Topology discovery on bridged 
Ethernet is more challenging. I have presented an algorithm that allows the topology of 
a bridged Ethernet to be determined even in the presence of incomplete knowledge. In 
particular, the provable minimum knowledge requirement of my algorithm guarantees that 
it will complete successfully on practically any bridged Ethernet. 

5.2    Contributions 

• I have identified a several application classes and application support tools that ben- 
efit from or require knowledge of the network's topology. These examples moti- 
vate my approach to provide low-level information to applications in an accessible 
form. In particular, the local gap model, even though it provides a very high-level 
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characterization of the network, cannot be used without access to network topology 
information. 

• I have demonstrated that it is possible to provide network topology information and 
network component level performance characteristics while maintaining sufficient 
abstraction to ensure portability. The Remos interface allows applications to obtain 
both end-to-end performance predictions and network topology information within 
the same application-layer interface. 

• I have developed a formalism for expressing the differences between various options 
for providing predictions of application performance on different networks. This for- 
malism is particularly useful for comparing the complexity of producing application 
performance predictions using different sources of network performance data. 

• My implementation of network-based performance prediction demonstrates that this 
technique has similar accuracy compared to benchmark-based prediction using the 
same competing traffic. Considering the scalability and invasiveness benefits of the 
network-based technique, the similar accuracy makes this a promising technique for 
environments where low-level network-based information can be obtained. 

• I have developed an algorithm that can be used to derive the topology of a bridged 
Ethernet network with incomplete knowledge. Because it is difficult to obtain com- 
plete forwarding databases from Ethernet bridges, an algorithm that deals well with 
incomplete knowledge is needed to discover the topology of large Ethernet networks. 
My algorithm has provable behavior when faced with Ethernet bridges that do not 
provide forwarding entries for every address in the network. 

5.3    Future work 

A number of challenging issues and questions remain or have developed out of my research. 
Foremost among these issues is performing further verification of the network-based pre- 
diction technique, which is needed to validate its performance in different environments 
with different types of competing traffic. The traffic used in the experiments described 
in Chapter 3 was modeled after traffic aggregated from a number of flows. Further ex- 
periments need to be performed with more varieties of competing traffic, including traffic 
typical for a LAN, with fewer adaptive TCP flows; with WAN traffic accurately modeling 
many adaptive flows; and with traffic presenting a variety of flows, such as mixes of non- 
adaptive video and adaptive connections. Using a wider range of competing traffic sources 
will provide a better understanding of the advantages and disadvantages of different pre- 
diction techniques, as well as provide data to support the types of traffic data that should be 
collected by network components. 

One interesting question about competing traffic that is not well understood is how 
burstiness in network traffic effects applications' performance. It is generally considered 
"common knowledge" that bursty traffic on a network causes problems for applications 
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with fine granularity, but is less problematic for coarse-grained applications with longer- 
term bandwidth requirements. However, it isn't clear that this is true. Even if only caused 
by a temporary burst, packet loss can have long-term effects on TCP's performance. I 
have frequently been asked what the "correct" sampling interval is for measuring network 
utilization. I generally answer that it is application dependent, but I don't believe anyone 
really knows what range of intervals would be useful for different applications. 

The history-based approach used for predictions in Chapter 3 was practical for those 
experiments, but is impractical for large-scale deployment. Before expanding the network- 
based prediction of end-to-end performance into a system that can be implemented across 
the Internet, the question of using history, performance models, or some combination must 
be addressed. Analysis of the techniques in a number of different environments with several 
different types of applications will aid in continuing this development. 

Another interesting question is how more detailed information from the network com- 
ponents could be utilized. Although active networking may never be supported to the point 
that any user can download code into a router, networking technology does appear to be 
moving towards allowing network managers to insert their own code on their network com- 
ponents. I hope to acquire networking devices with these capabilities and use them to obtain 
more detailed statistics on the traffic passing through the network. My hope is that more 
detailed information will allow more accurate predictions to be made about applications' 
performance. 

Combining the topology derived using network-based techniques with benchmark- 
based techniques remains an intriguing possibility. Using accurate topology information 
should allow benchmarks to be planned for maximum usefulness and minimal invasive- 
ness. Topology information can be used to determine where the most useful parts of the 
network to measure are located and for planning traffic to minimize the invasiveness of the 
technique. Network-based utilization measurements can be made to determine which links 
are available and which are congested, and the most useful benchmarks can be selected 
based on this information. Scaling arguments aside, a combination of topology informa- 
tion, network-based utilization measurements, and selective benchmarks to measure the 
performance of congested portions of the network may provide the most accurate and use- 
ful predictions of network performance for applications. 

Finally, my research has brushed on the curious relationship between network-aware 
applications and application-aware networks. In my mind, there is really a continuum here. 
There are ways in which a network can adapt or support an application that an applica- 
tion simply cannot do. Similarly, there are ways in which an application can adapt to the 
network that the network can never accomplish. Personally, I believe that the application 
has more degrees of freedom and have focused on network-aware applications. However, 
I think an ideal solution is one in which both types of adaptation can be used simultane- 
ously. What is needed to develop such a solution is to bring together knowledge of how the 
application can adapt and knowledge of how the network can adapt together to work out 
a solution. It seems unlikely that there is a single representation that will describe all the 
different ways either applications or networks have of adapting to each other. But it might 
be possible to develop a programming representation where an application can describe 
how it would react to a particular network configuration and vice-versa. Then, a solution 
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could be worked out iteratively with a master scheduler. There are a number of significant 
issues here, including the programming representation, scheduling algorithm, and security 
concerns. But I believe that with an appropriate secure computing environment, a solution 
is possible to better unify these two approaches to adaptation. 

5.4    Conclusion 

I have demonstrated that access to low-level network components provides the information 
needed by distributed applications to adapt themselves to their network environment. The 
techniques to obtain information from the network devices work with today's networking 
technology. Using that information, both the high-level end-to-end performance predic- 
tions and the low-level network topology needs of applications can be met. Using low-level 
network information provides information to applications in a scalable and non-invasive 
manner. While the needs of many applications are met with other current technologies, 
the scalability, non-invasiveness, and topology obtained through the network-based tech- 
nique allow other applications, more resources, and more users to be used with and benefit 
from the power of distributed computing. Although the network-based technique violates 
the end-to-end abstraction provided by most networking protocols, the advantages of using 
low-level information at a higher level are clear. 
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